| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 |
|
| impbid2.2 |
|
| Ref | Expression |
|---|---|
| impbid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 |
. . 3
| |
| 2 | impbid2.1 |
. . 3
| |
| 3 | 1, 2 | impbid1 142 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 686 biorf 745 biorfi 747 pm4.72 828 con34bdc 872 notnotbdc 873 dfandc 885 imanst 889 dfordc 893 dfor2dc 896 pm4.79dc 904 orimdidc 907 pm5.54dc 919 pm5.62dc 947 bimsc1 965 modc 2088 euan 2101 exmoeudc 2108 nebidc 2447 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 elab3gf 2914 abidnf 2932 elsn2g 3656 difsn 3760 prel12 3802 dfnfc2 3858 intmin4 3903 dfiin2g 3950 elpw2g 4190 ordsucg 4539 ssrel 4752 ssrel2 4754 ssrelrel 4764 releldmb 4904 relelrnb 4905 cnveqb 5126 dmsnopg 5142 relcnvtr 5190 relcnvexb 5210 f1ocnvb 5519 ffvresb 5726 fconstfvm 5781 fnoprabg 6024 dfsmo2 6346 nntri2 6553 nntri1 6555 en1bg 6860 pw2f1odclem 6896 fieq0 7043 djulclb 7122 ismkvnex 7222 nngt1ne1 9027 znegclb 9361 iccneg 10066 fzsn 10143 fz1sbc 10173 fzofzp1b 10306 ceilqidz 10410 flqeqceilz 10412 reim0b 11029 rexanre 11387 dvdsext 12022 zob 12058 pc11 12510 pcz 12511 gsumval2 13050 issubg2m 13329 issubg4m 13333 ghmmhmb 13394 opprrngbg 13644 opprringbg 13646 issubrng2 13776 issubrg2 13807 eltg3 14303 bastop 14321 cnptoprest 14485 cos11 15099 zabsle1 15250 lgsabs1 15290 lgsquadlem2 15329 bj-om 15593 |
| Copyright terms: Public domain | W3C validator |