| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| impbid2.1 | 
 | 
| impbid2.2 | 
 | 
| Ref | Expression | 
|---|---|
| impbid2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | impbid2.2 | 
. . 3
 | |
| 2 | impbid2.1 | 
. . 3
 | |
| 3 | 1, 2 | impbid1 142 | 
. 2
 | 
| 4 | 3 | bicomd 141 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: biimt 241 mtt 686 biorf 745 biorfi 747 pm4.72 828 con34bdc 872 notnotbdc 873 dfandc 885 imanst 889 dfordc 893 dfor2dc 896 pm4.79dc 904 orimdidc 907 pm5.54dc 919 pm5.62dc 947 bimsc1 965 modc 2088 euan 2101 exmoeudc 2108 nebidc 2447 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 elab3gf 2914 abidnf 2932 elsn2g 3655 difsn 3759 prel12 3801 dfnfc2 3857 intmin4 3902 dfiin2g 3949 elpw2g 4189 ordsucg 4538 ssrel 4751 ssrel2 4753 ssrelrel 4763 releldmb 4903 relelrnb 4904 cnveqb 5125 dmsnopg 5141 relcnvtr 5189 relcnvexb 5209 f1ocnvb 5518 ffvresb 5725 fconstfvm 5780 fnoprabg 6023 dfsmo2 6345 nntri2 6552 nntri1 6554 en1bg 6859 pw2f1odclem 6895 fieq0 7042 djulclb 7121 ismkvnex 7221 nngt1ne1 9025 znegclb 9359 iccneg 10064 fzsn 10141 fz1sbc 10171 fzofzp1b 10304 ceilqidz 10408 flqeqceilz 10410 reim0b 11027 rexanre 11385 dvdsext 12020 zob 12056 pc11 12500 pcz 12501 gsumval2 13040 issubg2m 13319 issubg4m 13323 ghmmhmb 13384 opprrngbg 13634 opprringbg 13636 issubrng2 13766 issubrg2 13797 eltg3 14293 bastop 14311 cnptoprest 14475 cos11 15089 zabsle1 15240 lgsabs1 15280 lgsquadlem2 15319 bj-om 15583 | 
| Copyright terms: Public domain | W3C validator |