![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
impbid2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbid2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | impbid2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid1 142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 141 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimt 241 mtt 686 biorf 745 biorfi 747 pm4.72 828 con34bdc 872 notnotbdc 873 dfandc 885 imanst 889 dfordc 893 dfor2dc 896 pm4.79dc 904 orimdidc 907 pm5.54dc 919 pm5.62dc 947 bimsc1 965 modc 2085 euan 2098 exmoeudc 2105 nebidc 2444 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 elab3gf 2910 abidnf 2928 elsn2g 3651 difsn 3755 prel12 3797 dfnfc2 3853 intmin4 3898 dfiin2g 3945 elpw2g 4185 ordsucg 4534 ssrel 4747 ssrel2 4749 ssrelrel 4759 releldmb 4899 relelrnb 4900 cnveqb 5121 dmsnopg 5137 relcnvtr 5185 relcnvexb 5205 f1ocnvb 5514 ffvresb 5721 fconstfvm 5776 fnoprabg 6019 dfsmo2 6340 nntri2 6547 nntri1 6549 en1bg 6854 pw2f1odclem 6890 fieq0 7035 djulclb 7114 ismkvnex 7214 nngt1ne1 9017 znegclb 9350 iccneg 10055 fzsn 10132 fz1sbc 10162 fzofzp1b 10295 ceilqidz 10387 flqeqceilz 10389 reim0b 11006 rexanre 11364 dvdsext 11997 zob 12032 pc11 12469 pcz 12470 gsumval2 12980 issubg2m 13259 issubg4m 13263 ghmmhmb 13324 opprrngbg 13574 opprringbg 13576 issubrng2 13706 issubrg2 13737 eltg3 14225 bastop 14243 cnptoprest 14407 cos11 14988 zabsle1 15115 lgsabs1 15155 bj-om 15429 |
Copyright terms: Public domain | W3C validator |