| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 |
|
| impbid2.2 |
|
| Ref | Expression |
|---|---|
| impbid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 |
. . 3
| |
| 2 | impbid2.1 |
. . 3
| |
| 3 | 1, 2 | impbid1 142 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 686 biorf 745 biorfi 747 pm4.72 828 con34bdc 872 notnotbdc 873 dfandc 885 imanst 889 dfordc 893 dfor2dc 896 pm4.79dc 904 orimdidc 907 pm5.54dc 919 pm5.62dc 947 bimsc1 965 modc 2088 euan 2101 exmoeudc 2108 nebidc 2447 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 elab3gf 2914 abidnf 2932 elsn2g 3656 difsn 3760 prel12 3802 dfnfc2 3858 intmin4 3903 dfiin2g 3950 elpw2g 4190 ordsucg 4539 ssrel 4752 ssrel2 4754 ssrelrel 4764 releldmb 4904 relelrnb 4905 cnveqb 5126 dmsnopg 5142 relcnvtr 5190 relcnvexb 5210 f1ocnvb 5521 ffvresb 5728 fconstfvm 5783 fnoprabg 6027 dfsmo2 6354 nntri2 6561 nntri1 6563 en1bg 6868 pw2f1odclem 6904 fieq0 7051 djulclb 7130 ismkvnex 7230 nngt1ne1 9042 znegclb 9376 iccneg 10081 fzsn 10158 fz1sbc 10188 fzofzp1b 10321 ceilqidz 10425 flqeqceilz 10427 reim0b 11044 rexanre 11402 dvdsext 12037 zob 12073 pc11 12525 pcz 12526 gsumval2 13099 issubg2m 13395 issubg4m 13399 ghmmhmb 13460 opprrngbg 13710 opprringbg 13712 issubrng2 13842 issubrg2 13873 eltg3 14377 bastop 14395 cnptoprest 14559 cos11 15173 zabsle1 15324 lgsabs1 15364 lgsquadlem2 15403 bj-om 15667 |
| Copyright terms: Public domain | W3C validator |