Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 | |
impbid2.2 |
Ref | Expression |
---|---|
impbid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 | . . 3 | |
2 | impbid2.1 | . . 3 | |
3 | 1, 2 | impbid1 141 | . 2 |
4 | 3 | bicomd 140 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimt 240 mtt 680 biorf 739 biorfi 741 pm4.72 822 con34bdc 866 notnotbdc 867 dfandc 879 imanst 883 dfordc 887 dfor2dc 890 pm4.79dc 898 orimdidc 901 pm5.54dc 913 pm5.62dc 940 bimsc1 958 modc 2062 euan 2075 exmoeudc 2082 nebidc 2420 cgsexg 2765 cgsex2g 2766 cgsex4g 2767 elab3gf 2880 abidnf 2898 elsn2g 3616 difsn 3717 prel12 3758 dfnfc2 3814 intmin4 3859 dfiin2g 3906 elpw2g 4142 ordsucg 4486 ssrel 4699 ssrel2 4701 ssrelrel 4711 releldmb 4848 relelrnb 4849 cnveqb 5066 dmsnopg 5082 relcnvtr 5130 relcnvexb 5150 f1ocnvb 5456 ffvresb 5659 fconstfvm 5714 fnoprabg 5954 dfsmo2 6266 nntri2 6473 nntri1 6475 en1bg 6778 fieq0 6953 djulclb 7032 ismkvnex 7131 nngt1ne1 8913 znegclb 9245 iccneg 9946 fzsn 10022 fz1sbc 10052 fzofzp1b 10184 ceilqidz 10272 flqeqceilz 10274 reim0b 10826 rexanre 11184 dvdsext 11815 zob 11850 pc11 12284 pcz 12285 eltg3 12851 bastop 12869 cnptoprest 13033 cos11 13568 zabsle1 13694 lgsabs1 13734 bj-om 13972 |
Copyright terms: Public domain | W3C validator |