| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 |
|
| impbid2.2 |
|
| Ref | Expression |
|---|---|
| impbid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 |
. . 3
| |
| 2 | impbid2.1 |
. . 3
| |
| 3 | 1, 2 | impbid1 142 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 687 biorf 746 biorfi 748 pm4.72 829 con34bdc 873 notnotbdc 874 dfandc 886 imanst 890 dfordc 894 dfor2dc 897 pm4.79dc 905 orimdidc 908 pm5.54dc 920 pm5.62dc 948 bimsc1 966 modc 2097 euan 2110 exmoeudc 2117 nebidc 2456 cgsexg 2807 cgsex2g 2808 cgsex4g 2809 elab3gf 2923 abidnf 2941 elsn2g 3666 difsn 3770 prel12 3812 dfnfc2 3868 intmin4 3913 dfiin2g 3960 elpw2g 4201 ordsucg 4551 ssrel 4764 ssrel2 4766 ssrelrel 4776 releldmb 4916 relelrnb 4917 cnveqb 5139 dmsnopg 5155 relcnvtr 5203 relcnvexb 5223 f1ocnvb 5538 ffvresb 5745 fconstfvm 5804 fnoprabg 6048 dfsmo2 6375 nntri2 6582 nntri1 6584 en1bg 6894 pw2f1odclem 6933 fieq0 7080 djulclb 7159 ismkvnex 7259 nngt1ne1 9073 znegclb 9407 iccneg 10113 fzsn 10190 fz1sbc 10220 fzofzp1b 10359 ceilqidz 10463 flqeqceilz 10465 reim0b 11206 rexanre 11564 dvdsext 12199 zob 12235 pc11 12687 pcz 12688 gsumval2 13262 issubg2m 13558 issubg4m 13562 ghmmhmb 13623 opprrngbg 13873 opprringbg 13875 issubrng2 14005 issubrg2 14036 eltg3 14562 bastop 14580 cnptoprest 14744 cos11 15358 zabsle1 15509 lgsabs1 15549 lgsquadlem2 15588 bj-om 15910 |
| Copyright terms: Public domain | W3C validator |