![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
impbid2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbid2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | impbid2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid1 142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 141 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimt 241 mtt 685 biorf 744 biorfi 746 pm4.72 827 con34bdc 871 notnotbdc 872 dfandc 884 imanst 888 dfordc 892 dfor2dc 895 pm4.79dc 903 orimdidc 906 pm5.54dc 918 pm5.62dc 945 bimsc1 963 modc 2069 euan 2082 exmoeudc 2089 nebidc 2427 cgsexg 2774 cgsex2g 2775 cgsex4g 2776 elab3gf 2889 abidnf 2907 elsn2g 3627 difsn 3731 prel12 3773 dfnfc2 3829 intmin4 3874 dfiin2g 3921 elpw2g 4158 ordsucg 4503 ssrel 4716 ssrel2 4718 ssrelrel 4728 releldmb 4866 relelrnb 4867 cnveqb 5086 dmsnopg 5102 relcnvtr 5150 relcnvexb 5170 f1ocnvb 5477 ffvresb 5681 fconstfvm 5736 fnoprabg 5978 dfsmo2 6290 nntri2 6497 nntri1 6499 en1bg 6802 fieq0 6977 djulclb 7056 ismkvnex 7155 nngt1ne1 8956 znegclb 9288 iccneg 9991 fzsn 10068 fz1sbc 10098 fzofzp1b 10230 ceilqidz 10318 flqeqceilz 10320 reim0b 10873 rexanre 11231 dvdsext 11863 zob 11898 pc11 12332 pcz 12333 issubg2m 13054 issubg4m 13058 opprringbg 13255 issubrg2 13367 eltg3 13596 bastop 13614 cnptoprest 13778 cos11 14313 zabsle1 14439 lgsabs1 14479 bj-om 14728 |
Copyright terms: Public domain | W3C validator |