| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 |
|
| impbid2.2 |
|
| Ref | Expression |
|---|---|
| impbid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 |
. . 3
| |
| 2 | impbid2.1 |
. . 3
| |
| 3 | 1, 2 | impbid1 142 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 687 biorf 746 biorfi 748 pm4.72 829 con34bdc 873 notnotbdc 874 dfandc 886 imanst 890 dfordc 894 dfor2dc 897 pm4.79dc 905 orimdidc 908 pm5.54dc 920 pm5.62dc 948 bimsc1 966 modc 2099 euan 2112 exmoeudc 2119 nebidc 2458 cgsexg 2812 cgsex2g 2813 cgsex4g 2814 elab3gf 2930 abidnf 2948 elsn2g 3676 difsn 3781 prel12 3825 dfnfc2 3882 intmin4 3927 dfiin2g 3974 elpw2g 4216 ordsucg 4568 ssrel 4781 ssrel2 4783 ssrelrel 4793 releldmb 4934 relelrnb 4935 cnveqb 5157 dmsnopg 5173 relcnvtr 5221 relcnvexb 5241 f1ocnvb 5558 ffvresb 5766 fconstfvm 5825 fnoprabg 6069 dfsmo2 6396 nntri2 6603 nntri1 6605 en1bg 6915 pw2f1odclem 6956 fieq0 7104 djulclb 7183 ismkvnex 7283 nngt1ne1 9106 znegclb 9440 iccneg 10146 fzsn 10223 fz1sbc 10253 fzofzp1b 10394 ceilqidz 10498 flqeqceilz 10500 reim0b 11288 rexanre 11646 dvdsext 12281 zob 12317 pc11 12769 pcz 12770 gsumval2 13344 issubg2m 13640 issubg4m 13644 ghmmhmb 13705 opprrngbg 13955 opprringbg 13957 issubrng2 14087 issubrg2 14118 eltg3 14644 bastop 14662 cnptoprest 14826 cos11 15440 zabsle1 15591 lgsabs1 15631 lgsquadlem2 15670 bj-om 16072 |
| Copyright terms: Public domain | W3C validator |