Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 | |
impbid2.2 |
Ref | Expression |
---|---|
impbid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 | . . 3 | |
2 | impbid2.1 | . . 3 | |
3 | 1, 2 | impbid1 141 | . 2 |
4 | 3 | bicomd 140 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimt 240 mtt 680 biorf 739 biorfi 741 pm4.72 822 con34bdc 866 notnotbdc 867 dfandc 879 imanst 883 dfordc 887 dfor2dc 890 pm4.79dc 898 orimdidc 901 pm5.54dc 913 pm5.62dc 940 bimsc1 958 modc 2062 euan 2075 exmoeudc 2082 nebidc 2420 cgsexg 2765 cgsex2g 2766 cgsex4g 2767 elab3gf 2880 abidnf 2898 elsn2g 3614 difsn 3715 prel12 3756 dfnfc2 3812 intmin4 3857 dfiin2g 3904 elpw2g 4140 ordsucg 4484 ssrel 4697 ssrel2 4699 ssrelrel 4709 releldmb 4846 relelrnb 4847 cnveqb 5064 dmsnopg 5080 relcnvtr 5128 relcnvexb 5148 f1ocnvb 5454 ffvresb 5657 fconstfvm 5712 fnoprabg 5952 dfsmo2 6264 nntri2 6471 nntri1 6473 en1bg 6775 fieq0 6950 djulclb 7029 ismkvnex 7128 nngt1ne1 8902 znegclb 9234 iccneg 9935 fzsn 10011 fz1sbc 10041 fzofzp1b 10173 ceilqidz 10261 flqeqceilz 10263 reim0b 10815 rexanre 11173 dvdsext 11804 zob 11839 pc11 12273 pcz 12274 eltg3 12812 bastop 12830 cnptoprest 12994 cos11 13529 zabsle1 13655 lgsabs1 13695 bj-om 13934 |
Copyright terms: Public domain | W3C validator |