| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 |
|
| impbid2.2 |
|
| Ref | Expression |
|---|---|
| impbid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 |
. . 3
| |
| 2 | impbid2.1 |
. . 3
| |
| 3 | 1, 2 | impbid1 142 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 689 biorf 749 biorfi 751 pm4.72 832 con34bdc 876 notnotbdc 877 dfandc 889 imanst 893 dfordc 897 dfor2dc 900 pm4.79dc 908 orimdidc 911 pm5.54dc 923 pm5.62dc 951 bimsc1 969 dfifp2dc 987 modc 2121 euan 2134 exmoeudc 2141 nebidc 2480 cgsexg 2835 cgsex2g 2836 cgsex4g 2837 elab3gf 2953 abidnf 2971 elsn2g 3699 difsn 3805 prel12 3849 dfnfc2 3906 intmin4 3951 dfiin2g 3998 elpw2g 4240 ordsucg 4594 ssrel 4807 ssrel2 4809 ssrelrel 4819 releldmb 4961 relelrnb 4962 cnveqb 5184 dmsnopg 5200 relcnvtr 5248 relcnvexb 5268 f1ocnvb 5586 ffvresb 5798 fconstfvm 5857 fnoprabg 6105 dfsmo2 6433 nntri2 6640 nntri1 6642 en1bg 6952 pw2f1odclem 6995 fieq0 7143 djulclb 7222 ismkvnex 7322 nngt1ne1 9145 znegclb 9479 iccneg 10185 fzsn 10262 fz1sbc 10292 fzofzp1b 10434 ceilqidz 10538 flqeqceilz 10540 reim0b 11373 rexanre 11731 dvdsext 12366 zob 12402 pc11 12854 pcz 12855 gsumval2 13430 issubg2m 13726 issubg4m 13730 ghmmhmb 13791 opprrngbg 14041 opprringbg 14043 issubrng2 14174 issubrg2 14205 eltg3 14731 bastop 14749 cnptoprest 14913 cos11 15527 zabsle1 15678 lgsabs1 15718 lgsquadlem2 15757 bj-om 16300 |
| Copyright terms: Public domain | W3C validator |