ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imimorbdc Unicode version

Theorem imimorbdc 896
Description: Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.)
Assertion
Ref Expression
imimorbdc  |-  (DECID  ps  ->  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  \/  ch ) ) ) )

Proof of Theorem imimorbdc
StepHypRef Expression
1 bi2.04 248 . 2  |-  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ( ps  ->  ch )  ->  ch )
) )
2 dfor2dc 895 . . 3  |-  (DECID  ps  ->  ( ( ps  \/  ch ) 
<->  ( ( ps  ->  ch )  ->  ch )
) )
32imbi2d 230 . 2  |-  (DECID  ps  ->  ( ( ph  ->  ( ps  \/  ch ) )  <-> 
( ph  ->  ( ( ps  ->  ch )  ->  ch ) ) ) )
41, 3bitr4id 199 1  |-  (DECID  ps  ->  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  \/  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator