Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imimorbdc | Unicode version |
Description: Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.) |
Ref | Expression |
---|---|
imimorbdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 247 | . 2 | |
2 | dfor2dc 885 | . . 3 DECID | |
3 | 2 | imbi2d 229 | . 2 DECID |
4 | 1, 3 | bitr4id 198 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |