| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfor2dc | GIF version | ||
| Description: Disjunction expressed in terms of implication only, for a decidable proposition. Based on theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 27-Mar-2018.) |
| Ref | Expression |
|---|---|
| dfor2dc | ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 → 𝜓) → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.62 749 | . 2 ⊢ ((𝜑 ∨ 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | pm2.68dc 895 | . 2 ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜓) → (𝜑 ∨ 𝜓))) | |
| 3 | 1, 2 | impbid2 143 | 1 ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 → 𝜓) → 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: imimorbdc 897 |
| Copyright terms: Public domain | W3C validator |