Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 |
Ref | Expression |
---|---|
orim2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | orim1i.1 | . 2 | |
3 | 1, 2 | orim12i 749 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi2i 752 pm1.5 755 pm2.3 765 ordi 806 dcn 828 pm2.25dc 879 dcan 919 axi12 1494 dveeq2or 1796 equs5or 1810 sb4or 1813 sb4bor 1815 nfsb2or 1817 sbequilem 1818 sbequi 1819 sbal1yz 1981 dvelimor 1998 exmodc 2056 r19.44av 2616 exmidundif 4166 exmidundifim 4167 elsuci 4362 acexmidlemcase 5813 undifdcss 6860 updjudhf 7013 ctssdccl 7045 zindd 9265 fsumsplitsn 11289 fprodcllem 11485 fprodsplitsn 11512 exmid1stab 13533 subctctexmid 13534 |
Copyright terms: Public domain | W3C validator |