![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orim2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | orim1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | orim12i 711 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: orbi2i 714 pm1.5 717 pm2.3 727 ordi 765 dcn 784 pm2.25dc 830 dcan 880 axi12 1452 dveeq2or 1744 equs5or 1758 sb4or 1761 sb4bor 1763 nfsb2or 1765 sbequilem 1766 sbequi 1767 sbal1yz 1925 dvelimor 1942 exmodc 1998 r19.44av 2526 exmidundif 4035 elsuci 4230 acexmidlemcase 5647 undifdcss 6631 updjudhf 6768 zindd 8862 fsumsplitsn 10800 |
Copyright terms: Public domain | W3C validator |