![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orim2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | orim1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | orim12i 759 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi2i 762 pm1.5 765 pm2.3 775 ordi 816 dcn 842 pm2.25dc 893 dcan 933 axi12 1514 dveeq2or 1816 equs5or 1830 sb4or 1833 sb4bor 1835 nfsb2or 1837 sbequilem 1838 sbequi 1839 sbal1yz 2001 dvelimor 2018 exmodc 2076 r19.44av 2636 exmidundif 4208 exmidundifim 4209 exmid1stab 4210 elsuci 4405 acexmidlemcase 5872 undifdcss 6924 updjudhf 7080 ctssdccl 7112 zindd 9373 fiubm 10810 fsumsplitsn 11420 fprodcllem 11616 fprodsplitsn 11643 subctctexmid 14835 |
Copyright terms: Public domain | W3C validator |