| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 |
|
| Ref | Expression |
|---|---|
| orim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | orim1i.1 |
. 2
| |
| 3 | 1, 2 | orim12i 760 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi2i 763 pm1.5 766 pm2.3 776 ordi 817 dcn 843 pm2.25dc 894 dcand 934 axi12 1536 dveeq2or 1838 equs5or 1852 sb4or 1855 sb4bor 1857 nfsb2or 1859 sbequilem 1860 sbequi 1861 sbal1yz 2028 dvelimor 2045 exmodc 2103 r19.44av 2664 exmidundif 4249 exmidundifim 4250 exmid1stab 4251 elsuci 4449 acexmidlemcase 5938 undifdcss 7019 updjudhf 7180 ctssdccl 7212 zindd 9490 fiubm 10971 fsumsplitsn 11692 fprodcllem 11888 fprodsplitsn 11915 gsumwsubmcl 13299 gsumwmhm 13301 subctctexmid 15899 |
| Copyright terms: Public domain | W3C validator |