| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 |
|
| Ref | Expression |
|---|---|
| orim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | orim1i.1 |
. 2
| |
| 3 | 1, 2 | orim12i 764 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi2i 767 pm1.5 770 pm2.3 780 ordi 821 dcn 847 pm2.25dc 898 dcand 938 axi12 1560 dveeq2or 1862 equs5or 1876 sb4or 1879 sb4bor 1881 nfsb2or 1883 sbequilem 1884 sbequi 1885 sbal1yz 2052 dvelimor 2069 exmodc 2128 r19.44av 2690 exmidundif 4289 exmidundifim 4290 exmid1stab 4291 elsuci 4493 acexmidlemcase 5995 undifdcss 7081 updjudhf 7242 ctssdccl 7274 zindd 9561 fiubm 11045 lswex 11118 fsumsplitsn 11916 fprodcllem 12112 fprodsplitsn 12139 gsumwsubmcl 13524 gsumwmhm 13526 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |