| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 |
|
| Ref | Expression |
|---|---|
| orim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | orim1i.1 |
. 2
| |
| 3 | 1, 2 | orim12i 760 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi2i 763 pm1.5 766 pm2.3 776 ordi 817 dcn 843 pm2.25dc 894 dcand 934 axi12 1528 dveeq2or 1830 equs5or 1844 sb4or 1847 sb4bor 1849 nfsb2or 1851 sbequilem 1852 sbequi 1853 sbal1yz 2020 dvelimor 2037 exmodc 2095 r19.44av 2656 exmidundif 4240 exmidundifim 4241 exmid1stab 4242 elsuci 4439 acexmidlemcase 5920 undifdcss 6993 updjudhf 7154 ctssdccl 7186 zindd 9461 fiubm 10937 fsumsplitsn 11592 fprodcllem 11788 fprodsplitsn 11815 gsumwsubmcl 13198 gsumwmhm 13200 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |