| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 |
|
| Ref | Expression |
|---|---|
| orim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | orim1i.1 |
. 2
| |
| 3 | 1, 2 | orim12i 761 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi2i 764 pm1.5 767 pm2.3 777 ordi 818 dcn 844 pm2.25dc 895 dcand 935 axi12 1538 dveeq2or 1840 equs5or 1854 sb4or 1857 sb4bor 1859 nfsb2or 1861 sbequilem 1862 sbequi 1863 sbal1yz 2030 dvelimor 2047 exmodc 2105 r19.44av 2666 exmidundif 4261 exmidundifim 4262 exmid1stab 4263 elsuci 4463 acexmidlemcase 5957 undifdcss 7041 updjudhf 7202 ctssdccl 7234 zindd 9521 fiubm 11005 lswex 11077 fsumsplitsn 11806 fprodcllem 12002 fprodsplitsn 12029 gsumwsubmcl 13413 gsumwmhm 13415 subctctexmid 16109 |
| Copyright terms: Public domain | W3C validator |