ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2i Unicode version

Theorem orim2i 751
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
orim2i  |-  ( ( ch  \/  ph )  ->  ( ch  \/  ps ) )

Proof of Theorem orim2i
StepHypRef Expression
1 id 19 . 2  |-  ( ch 
->  ch )
2 orim1i.1 . 2  |-  ( ph  ->  ps )
31, 2orim12i 749 1  |-  ( ( ch  \/  ph )  ->  ( ch  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  orbi2i  752  pm1.5  755  pm2.3  765  ordi  806  dcn  828  pm2.25dc  879  dcan  919  axi12  1494  dveeq2or  1796  equs5or  1810  sb4or  1813  sb4bor  1815  nfsb2or  1817  sbequilem  1818  sbequi  1819  sbal1yz  1981  dvelimor  1998  exmodc  2056  r19.44av  2616  exmidundif  4166  exmidundifim  4167  elsuci  4362  acexmidlemcase  5813  undifdcss  6860  updjudhf  7013  ctssdccl  7045  zindd  9265  fsumsplitsn  11289  fprodcllem  11485  fprodsplitsn  11512  exmid1stab  13533  subctctexmid  13534
  Copyright terms: Public domain W3C validator