| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2i | Unicode version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 |
|
| Ref | Expression |
|---|---|
| orim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | orim1i.1 |
. 2
| |
| 3 | 1, 2 | orim12i 761 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi2i 764 pm1.5 767 pm2.3 777 ordi 818 dcn 844 pm2.25dc 895 dcand 935 axi12 1537 dveeq2or 1839 equs5or 1853 sb4or 1856 sb4bor 1858 nfsb2or 1860 sbequilem 1861 sbequi 1862 sbal1yz 2029 dvelimor 2046 exmodc 2104 r19.44av 2665 exmidundif 4250 exmidundifim 4251 exmid1stab 4252 elsuci 4450 acexmidlemcase 5939 undifdcss 7020 updjudhf 7181 ctssdccl 7213 zindd 9491 fiubm 10973 fsumsplitsn 11721 fprodcllem 11917 fprodsplitsn 11944 gsumwsubmcl 13328 gsumwmhm 13330 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |