| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmodc | GIF version | ||
| Description: If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| exmodc | ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID ∃𝑥𝜑 ↔ (∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
| 2 | pm2.21 618 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 3 | df-mo 2049 | . . . 4 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
| 5 | 4 | orim2i 762 | . 2 ⊢ ((∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑) → (∃𝑥𝜑 ∨ ∃*𝑥𝜑)) |
| 6 | 1, 5 | sylbi 121 | 1 ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-mo 2049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |