ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmodc GIF version

Theorem exmodc 1998
Description: If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.)
Assertion
Ref Expression
exmodc (DECID𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑))

Proof of Theorem exmodc
StepHypRef Expression
1 df-dc 781 . 2 (DECID𝑥𝜑 ↔ (∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
2 pm2.21 582 . . . 4 (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
3 df-mo 1952 . . . 4 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
42, 3sylibr 132 . . 3 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
54orim2i 713 . 2 ((∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑) → (∃𝑥𝜑 ∨ ∃*𝑥𝜑))
61, 5sylbi 119 1 (DECID𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 664  DECID wdc 780  wex 1426  ∃!weu 1948  ∃*wmo 1949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 580  ax-io 665
This theorem depends on definitions:  df-bi 115  df-dc 781  df-mo 1952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator