ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falorfal Unicode version

Theorem falorfal 1398
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falorfal  |-  ( ( F.  \/ F.  )  <-> F.  )

Proof of Theorem falorfal
StepHypRef Expression
1 oridm 747 1  |-  ( ( F.  \/ F.  )  <-> F.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698   F. wfal 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator