ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falortru Unicode version

Theorem falortru 1407
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru  |-  ( ( F.  \/ T.  )  <-> T.  )

Proof of Theorem falortru
StepHypRef Expression
1 tru 1357 . . 3  |- T.
21olci 732 . 2  |-  ( F.  \/ T.  )
32bitru 1365 1  |-  ( ( F.  \/ T.  )  <-> T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 708   T. wtru 1354   F. wfal 1358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-tru 1356
This theorem is referenced by:  falxortru  1421
  Copyright terms: Public domain W3C validator