ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm Unicode version

Theorem oridm 759
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm  |-  ( (
ph  \/  ph )  <->  ph )

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 758 . 2  |-  ( (
ph  \/  ph )  ->  ph )
2 pm2.07 739 . 2  |-  ( ph  ->  ( ph  \/  ph ) )
31, 2impbii 126 1  |-  ( (
ph  \/  ph )  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.25  760  orordi  775  orordir  776  truortru  1425  falorfal  1428  truxortru  1439  falxorfal  1442  unidm  3316  preqsn  3816  funopsn  5764  reapirr  8652  reapti  8654  lt2msq  8961  nn0ge2m1nn  9357  absext  11407  prmdvdsexp  12503  sqpweven  12530  2sqpwodd  12531
  Copyright terms: Public domain W3C validator