ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm Unicode version

Theorem oridm 758
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm  |-  ( (
ph  \/  ph )  <->  ph )

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 757 . 2  |-  ( (
ph  \/  ph )  ->  ph )
2 pm2.07 738 . 2  |-  ( ph  ->  ( ph  \/  ph ) )
31, 2impbii 126 1  |-  ( (
ph  \/  ph )  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.25  759  orordi  774  orordir  775  truortru  1416  falorfal  1419  truxortru  1430  falxorfal  1433  unidm  3293  preqsn  3790  reapirr  8564  reapti  8566  lt2msq  8873  nn0ge2m1nn  9266  absext  11104  prmdvdsexp  12180  sqpweven  12207  2sqpwodd  12208
  Copyright terms: Public domain W3C validator