ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oridm Unicode version

Theorem oridm 759
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm  |-  ( (
ph  \/  ph )  <->  ph )

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 758 . 2  |-  ( (
ph  \/  ph )  ->  ph )
2 pm2.07 739 . 2  |-  ( ph  ->  ( ph  \/  ph ) )
31, 2impbii 126 1  |-  ( (
ph  \/  ph )  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.25  760  orordi  775  orordir  776  truortru  1425  falorfal  1428  truxortru  1439  falxorfal  1442  unidm  3316  preqsn  3816  funopsn  5762  reapirr  8650  reapti  8652  lt2msq  8959  nn0ge2m1nn  9355  absext  11374  prmdvdsexp  12470  sqpweven  12497  2sqpwodd  12498
  Copyright terms: Public domain W3C validator