ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpor Unicode version

Theorem ifpor 993
Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifpdc 992. (Contributed by BJ, 1-Oct-2019.)
Assertion
Ref Expression
ifpor  |-  (if- (
ph ,  ps ,  ch )  ->  ( ps  \/  ch ) )

Proof of Theorem ifpor
StepHypRef Expression
1 df-ifp 984 . 2  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ch )
) )
2 simpr 110 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
3 simpr 110 . . 3  |-  ( ( -.  ph  /\  ch )  ->  ch )
42, 3orim12i 764 . 2  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) )  -> 
( ps  \/  ch ) )
51, 4sylbi 121 1  |-  (if- (
ph ,  ps ,  ch )  ->  ( ps  \/  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator