ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpnst Unicode version

Theorem ifpnst 994
Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) (Proof shortened by Wolf Lammen, 5-May-2024.)
Assertion
Ref Expression
ifpnst  |-  (STAB  ph  ->  (if- ( ph ,  ps ,  ch )  <-> if- ( -.  ph ,  ch ,  ps ) ) )

Proof of Theorem ifpnst
StepHypRef Expression
1 ifpdc 985 . . 3  |-  (if- (
ph ,  ps ,  ch )  -> DECID  ph )
21adantl 277 . 2  |-  ( (STAB  ph  /\ if- ( ph ,  ps ,  ch ) )  -> DECID  ph )
3 ifpdc 985 . . 3  |-  (if- ( -.  ph ,  ch ,  ps )  -> DECID  -.  ph )
4 stdcndc 850 . . . 4  |-  ( (STAB  ph  /\ DECID  -.  ph )  <-> DECID  ph )
54biimpi 120 . . 3  |-  ( (STAB  ph  /\ DECID  -.  ph )  -> DECID  ph )
63, 5sylan2 286 . 2  |-  ( (STAB  ph  /\ if- ( -.  ph ,  ch ,  ps )
)  -> DECID  ph )
7 dfifp5dc 990 . . . 4  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( -.  ph  \/  ps )  /\  ( -.  ph  ->  ch ) ) ) )
87biancomd 271 . . 3  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( -.  ph  ->  ch )  /\  ( -.  ph  \/  ps ) ) ) )
9 dcn 847 . . . 4  |-  (DECID  ph  -> DECID  -.  ph )
10 dfifp3dc 988 . . . 4  |-  (DECID  -.  ph  ->  (if- ( -.  ph ,  ch ,  ps )  <->  ( ( -.  ph  ->  ch )  /\  ( -. 
ph  \/  ps )
) ) )
119, 10syl 14 . . 3  |-  (DECID  ph  ->  (if- ( -.  ph ,  ch ,  ps )  <->  ( ( -.  ph  ->  ch )  /\  ( -. 
ph  \/  ps )
) ) )
128, 11bitr4d 191 . 2  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <-> if- ( -.  ph ,  ch ,  ps ) ) )
132, 6, 12pm5.21nd 921 1  |-  (STAB  ph  ->  (if- ( ph ,  ps ,  ch )  <-> if- ( -.  ph ,  ch ,  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  STAB wstab 835  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator