| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifpnst | Unicode version | ||
| Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) (Proof shortened by Wolf Lammen, 5-May-2024.) |
| Ref | Expression |
|---|---|
| ifpnst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpdc 985 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | ifpdc 985 |
. . 3
| |
| 4 | stdcndc 850 |
. . . 4
| |
| 5 | 4 | biimpi 120 |
. . 3
|
| 6 | 3, 5 | sylan2 286 |
. 2
|
| 7 | dfifp5dc 990 |
. . . 4
| |
| 8 | 7 | biancomd 271 |
. . 3
|
| 9 | dcn 847 |
. . . 4
| |
| 10 | dfifp3dc 988 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | 8, 11 | bitr4d 191 |
. 2
|
| 13 | 2, 6, 12 | pm5.21nd 921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-ifp 984 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |