ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anifpdc Unicode version

Theorem anifpdc 992
Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor 993. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
anifpdc  |-  (DECID  ph  ->  ( ( ps  /\  ch )  -> if- ( ph ,  ps ,  ch )
) )

Proof of Theorem anifpdc
StepHypRef Expression
1 olc 716 . . 3  |-  ( ps 
->  ( -.  ph  \/  ps ) )
2 olc 716 . . 3  |-  ( ch 
->  ( ph  \/  ch ) )
31, 2anim12i 338 . 2  |-  ( ( ps  /\  ch )  ->  ( ( -.  ph  \/  ps )  /\  ( ph  \/  ch ) ) )
4 dfifp4dc 989 . 2  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( -.  ph  \/  ps )  /\  ( ph  \/  ch ) ) ) )
53, 4imbitrrid 156 1  |-  (DECID  ph  ->  ( ( ps  /\  ch )  -> if- ( ph ,  ps ,  ch )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator