ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbi2 Unicode version

Theorem imbi2 235
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2  |-  ( (
ph 
<->  ps )  ->  (
( ch  ->  ph )  <->  ( ch  ->  ps )
) )

Proof of Theorem imbi2
StepHypRef Expression
1 id 19 . 2  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
21imbi2d 228 1  |-  ( (
ph 
<->  ps )  ->  (
( ch  ->  ph )  <->  ( ch  ->  ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  3impexpbicom  1368
  Copyright terms: Public domain W3C validator