ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impexpbicom Unicode version

Theorem 3impexpbicom 1426
Description: 3impexp 1425 with biconditional consequent of antecedent that is commuted in consequent. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
3impexpbicom  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) ) )

Proof of Theorem 3impexpbicom
StepHypRef Expression
1 bicom 139 . . . 4  |-  ( ( th  <->  ta )  <->  ( ta  <->  th ) )
2 imbi2 236 . . . . 5  |-  ( ( ( th  <->  ta )  <->  ( ta  <->  th ) )  -> 
( ( ( ph  /\ 
ps  /\  ch )  ->  ( th  <->  ta )
)  <->  ( ( ph  /\ 
ps  /\  ch )  ->  ( ta  <->  th )
) ) )
32biimpcd 158 . . . 4  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  -> 
( ( ( th  <->  ta )  <->  ( ta  <->  th )
)  ->  ( ( ph  /\  ps  /\  ch )  ->  ( ta  <->  th )
) ) )
41, 3mpi 15 . . 3  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  -> 
( ( ph  /\  ps  /\  ch )  -> 
( ta  <->  th )
) )
543expd 1214 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  -> 
( ph  ->  ( ps 
->  ( ch  ->  ( ta 
<->  th ) ) ) ) )
6 3impexp 1425 . . . 4  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( ta 
<->  th ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) ) )
76biimpri 132 . . 3  |-  ( (
ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->  ( ( ph  /\ 
ps  /\  ch )  ->  ( ta  <->  th )
) )
87, 1syl6ibr 161 . 2  |-  ( (
ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->  ( ( ph  /\ 
ps  /\  ch )  ->  ( th  <->  ta )
) )
95, 8impbii 125 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator