Theorem List for Intuitionistic Logic Explorer - 201-300   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | 3imtr4i 201 | 
A mixed syllogism inference, useful for applying a definition to both
       sides of an implication.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3imtr3d 202 | 
More general version of 3imtr3i 200.  Useful for converting conditional
       definitions in a formula.  (Contributed by NM, 8-Apr-1996.)
 | 
                                                                             
     | 
|   | 
| Theorem | 3imtr4d 203 | 
More general version of 3imtr4i 201.  Useful for converting conditional
       definitions in a formula.  (Contributed by NM, 26-Oct-1995.)
 | 
                                                                             
     | 
|   | 
| Theorem | 3imtr3g 204 | 
More general version of 3imtr3i 200.  Useful for converting definitions
       in a formula.  (Contributed by NM, 20-May-1996.)  (Proof shortened by
       Wolf Lammen, 20-Dec-2013.)
 | 
                                                                      | 
|   | 
| Theorem | 3imtr4g 205 | 
More general version of 3imtr4i 201.  Useful for converting definitions
       in a formula.  (Contributed by NM, 20-May-1996.)  (Proof shortened by
       Wolf Lammen, 20-Dec-2013.)
 | 
                                                                      | 
|   | 
| Theorem | 3bitri 206 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitrri 207 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 4-Aug-2006.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr2i 208 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 4-Aug-2006.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr2ri 209 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 4-Aug-2006.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr3i 210 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 19-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr3ri 211 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr4i 212 | 
A chained inference from transitive law for logical equivalence.  This
       inference is frequently used to apply a definition to both sides of a
       logical equivalence.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr4ri 213 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 2-Sep-1995.)
 | 
                                                          | 
|   | 
| Theorem | 3bitrd 214 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       13-Aug-1999.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitrrd 215 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr2d 216 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr2rd 217 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr3d 218 | 
Deduction from transitivity of biconditional.  Useful for converting
       conditional definitions in a formula.  (Contributed by NM,
       24-Apr-1996.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr3rd 219 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr4d 220 | 
Deduction from transitivity of biconditional.  Useful for converting
       conditional definitions in a formula.  (Contributed by NM,
       18-Oct-1995.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr4rd 221 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr3g 222 | 
More general version of 3bitr3i 210.  Useful for converting definitions
       in a formula.  (Contributed by NM, 4-Jun-1995.)
 | 
                                                                      | 
|   | 
| Theorem | 3bitr4g 223 | 
More general version of 3bitr4i 212.  Useful for converting definitions
       in a formula.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                                      | 
|   | 
| Theorem | bi3ant 224 | 
Construct a biconditional in antecedent position.  (Contributed by Wolf
       Lammen, 14-May-2013.)
 | 
                              
                      
                      | 
|   | 
| Theorem | bisym 225 | 
Express symmetries of theorems in terms of biconditionals.  (Contributed
     by Wolf Lammen, 14-May-2013.)
 | 
                                                                      | 
|   | 
| Theorem | imbi2i 226 | 
Introduce an antecedent to both sides of a logical equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       6-Feb-2013.)
 | 
                                      | 
|   | 
| Theorem | bibi2i 227 | 
Inference adding a biconditional to the left in an equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Andrew Salmon,
       7-May-2011.)  (Proof shortened by Wolf Lammen, 16-May-2013.)
 | 
                                      | 
|   | 
| Theorem | bibi1i 228 | 
Inference adding a biconditional to the right in an equivalence.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                      | 
|   | 
| Theorem | bibi12i 229 | 
The equivalence of two equivalences.  (Contributed by NM,
         5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | imbi2d 230 | 
Deduction adding an antecedent to both sides of a logical equivalence.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                            
      | 
|   | 
| Theorem | imbi1d 231 | 
Deduction adding a consequent to both sides of a logical equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       17-Sep-2013.)
 | 
                                            
      | 
|   | 
| Theorem | bibi2d 232 | 
Deduction adding a biconditional to the left in an equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       19-May-2013.)
 | 
                                                  | 
|   | 
| Theorem | bibi1d 233 | 
Deduction adding a biconditional to the right in an equivalence.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                  | 
|   | 
| Theorem | imbi12d 234 | 
Deduction joining two equivalences to form equivalence of implications.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                                  
      | 
|   | 
| Theorem | bibi12d 235 | 
Deduction joining two equivalences to form equivalence of
       biconditionals.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                                        | 
|   | 
| Theorem | imbi1 236 | 
Theorem *4.84 of [WhiteheadRussell] p.
122.  (Contributed by NM,
     3-Jan-2005.)
 | 
                
            
      | 
|   | 
| Theorem | imbi2 237 | 
Theorem *4.85 of [WhiteheadRussell] p.
122.  (Contributed by NM,
     3-Jan-2005.)  (Proof shortened by Wolf Lammen, 19-May-2013.)
 | 
                            
      | 
|   | 
| Theorem | imbi1i 238 | 
Introduce a consequent to both sides of a logical equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       17-Sep-2013.)
 | 
                                      | 
|   | 
| Theorem | imbi12i 239 | 
Join two logical equivalences to form equivalence of implications.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | bibi1 240 | 
Theorem *4.86 of [WhiteheadRussell] p.
122.  (Contributed by NM,
     3-Jan-2005.)
 | 
                
                  | 
|   | 
| Theorem | biimt 241 | 
A wff is equivalent to itself with true antecedent.  (Contributed by NM,
     28-Jan-1996.)
 | 
                      | 
|   | 
| Theorem | pm5.5 242 | 
Theorem *5.5 of [WhiteheadRussell] p.
125.  (Contributed by NM,
     3-Jan-2005.)
 | 
          
            | 
|   | 
| Theorem | a1bi 243 | 
Inference introducing a theorem as an antecedent.  (Contributed by NM,
       5-Aug-1993.)  (Proof shortened by Wolf Lammen, 11-Nov-2012.)
 | 
                          | 
|   | 
| Theorem | pm5.501 244 | 
Theorem *5.501 of [WhiteheadRussell]
p. 125.  (Contributed by NM,
     3-Jan-2005.)  (Revised by NM, 24-Jan-2013.)
 | 
                      | 
|   | 
| Theorem | ibib 245 | 
Implication in terms of implication and biconditional.  (Contributed by
     NM, 31-Mar-1994.)  (Proof shortened by Wolf Lammen, 24-Jan-2013.)
 | 
                            | 
|   | 
| Theorem | ibibr 246 | 
Implication in terms of implication and biconditional.  (Contributed by
     NM, 29-Apr-2005.)  (Proof shortened by Wolf Lammen, 21-Dec-2013.)
 | 
                            | 
|   | 
| Theorem | tbt 247 | 
A wff is equivalent to its equivalence with truth.  (Contributed by NM,
       18-Aug-1993.)  (Proof shortened by Andrew Salmon, 13-May-2011.)
 | 
                          | 
|   | 
| Theorem | bi2.04 248 | 
Logical equivalence of commuted antecedents.  Part of Theorem *4.87 of
     [WhiteheadRussell] p. 122. 
(Contributed by NM, 5-Aug-1993.)
 | 
            
                      | 
|   | 
| Theorem | pm5.4 249 | 
Antecedent absorption implication.  Theorem *5.4 of [WhiteheadRussell]
     p. 125.  (Contributed by NM, 5-Aug-1993.)
 | 
                            | 
|   | 
| Theorem | imdi 250 | 
Distributive law for implication.  Compare Theorem *5.41 of
     [WhiteheadRussell] p. 125. 
(Contributed by NM, 5-Aug-1993.)
 | 
            
                 
           | 
|   | 
| Theorem | pm5.41 251 | 
Theorem *5.41 of [WhiteheadRussell] p.
125.  (Contributed by NM,
     3-Jan-2005.)  (Proof shortened by Wolf Lammen, 12-Oct-2012.)
 | 
                                  
      | 
|   | 
| Theorem | imbibi 252 | 
The antecedent of one side of a biconditional can be moved out of the
     biconditional to become the antecedent of the remaining biconditional.
     (Contributed by BJ, 1-Jan-2025.)  (Proof shortened by Wolf Lammen,
     5-Jan-2025.)
 | 
                                  | 
|   | 
| Theorem | imim21b 253 | 
Simplify an implication between two implications when the antecedent of
     the first is a consequence of the antecedent of the second.  The reverse
     form is useful in producing the successor step in induction proofs.
     (Contributed by Paul Chapman, 22-Jun-2011.)  (Proof shortened by Wolf
     Lammen, 14-Sep-2013.)
 | 
            
     
                                   | 
|   | 
| Theorem | impd 254 | 
Importation deduction.  (Contributed by NM, 31-Mar-1994.)
 | 
                                                  | 
|   | 
| Theorem | impcomd 255 | 
Importation deduction with commuted antecedents.  (Contributed by Peter
       Mazsa, 24-Sep-2022.)  (Proof shortened by Wolf Lammen, 22-Oct-2022.)
 | 
                                                  | 
|   | 
| Theorem | imp31 256 | 
An importation inference.  (Contributed by NM, 26-Apr-1994.)
 | 
                                    
              | 
|   | 
| Theorem | imp32 257 | 
An importation inference.  (Contributed by NM, 26-Apr-1994.)
 | 
                                            
      | 
|   | 
| Theorem | expd 258 | 
Exportation deduction.  (Contributed by NM, 20-Aug-1993.)
 | 
                                       
           | 
|   | 
| Theorem | expdimp 259 | 
A deduction version of exportation, followed by importation.
       (Contributed by NM, 6-Sep-2008.)
 | 
                                                  | 
|   | 
| Theorem | impancom 260 | 
Mixed importation/commutation inference.  (Contributed by NM,
       22-Jun-2013.)
 | 
                                                  | 
|   | 
| Theorem | pm3.3 261 | 
Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112.  (Contributed
by NM,
     3-Jan-2005.)  (Proof shortened by Wolf Lammen, 24-Mar-2013.)
 | 
                                  | 
|   | 
| Theorem | pm3.31 262 | 
Theorem *3.31 (Imp) of [WhiteheadRussell] p. 112.  (Contributed
by NM,
     3-Jan-2005.)  (Proof shortened by Wolf Lammen, 24-Mar-2013.)
 | 
            
      
                | 
|   | 
| Theorem | impexp 263 | 
Import-export theorem.  Part of Theorem *4.87 of [WhiteheadRussell]
     p. 122.  (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf
     Lammen, 24-Mar-2013.)
 | 
                                  | 
|   | 
| Theorem | pm3.21 264 | 
Join antecedents with conjunction.  Theorem *3.21 of [WhiteheadRussell]
     p. 111.  (Contributed by NM, 5-Aug-1993.)
 | 
                      | 
|   | 
| Theorem | pm3.22 265 | 
Theorem *3.22 of [WhiteheadRussell] p.
111.  (Contributed by NM,
     3-Jan-2005.)  (Proof shortened by Wolf Lammen, 13-Nov-2012.)
 | 
                      | 
|   | 
| Theorem | ancom 266 | 
Commutative law for conjunction.  Theorem *4.3 of [WhiteheadRussell]
     p. 118.  (Contributed by NM, 25-Jun-1998.)  (Proof shortened by Wolf
     Lammen, 4-Nov-2012.)
 | 
                      | 
|   | 
| Theorem | ancomd 267 | 
Commutation of conjuncts in consequent.  (Contributed by Jeff Hankins,
       14-Aug-2009.)
 | 
                            
          | 
|   | 
| Theorem | ancoms 268 | 
Inference commuting conjunction in antecedent.  (Contributed by NM,
       21-Apr-1994.)
 | 
                                  
    | 
|   | 
| Theorem | ancomsd 269 | 
Deduction commuting conjunction in antecedent.  (Contributed by NM,
       12-Dec-2004.)
 | 
                                                  | 
|   | 
| Theorem | biancomi 270 | 
Commuting conjunction in a biconditional.  (Contributed by Peter Mazsa,
       17-Jun-2018.)
 | 
                                      | 
|   | 
| Theorem | biancomd 271 | 
Commuting conjunction in a biconditional, deduction form.  (Contributed
       by Peter Mazsa, 3-Oct-2018.)
 | 
                                                  | 
|   | 
| Theorem | pm3.2i 272 | 
Infer conjunction of premises.  (Contributed by NM, 5-Aug-1993.)
 | 
                              | 
|   | 
| Theorem | pm3.43i 273 | 
Nested conjunction of antecedents.  (Contributed by NM, 5-Aug-1993.)
 | 
            
                            | 
|   | 
| Theorem | simplbi 274 | 
Deduction eliminating a conjunct.  (Contributed by NM, 27-May-1998.)
 | 
                                | 
|   | 
| Theorem | simprbi 275 | 
Deduction eliminating a conjunct.  (Contributed by NM, 27-May-1998.)
 | 
                                | 
|   | 
| Theorem | adantr 276 | 
Inference adding a conjunct to the right of an antecedent.  (Contributed
       by NM, 30-Aug-1993.)
 | 
                     
           | 
|   | 
| Theorem | adantl 277 | 
Inference adding a conjunct to the left of an antecedent.  (Contributed
       by NM, 30-Aug-1993.)  (Proof shortened by Wolf Lammen, 23-Nov-2012.)
 | 
                                | 
|   | 
| Theorem | adantld 278 | 
Deduction adding a conjunct to the left of an antecedent.  (Contributed
       by NM, 4-May-1994.)  (Proof shortened by Wolf Lammen, 20-Dec-2012.)
 | 
                                            | 
|   | 
| Theorem | adantrd 279 | 
Deduction adding a conjunct to the right of an antecedent.  (Contributed
       by NM, 4-May-1994.)
 | 
                                            | 
|   | 
| Theorem | impel 280 | 
An inference for implication elimination.  (Contributed by Giovanni
       Mascellani, 23-May-2019.)  (Proof shortened by Wolf Lammen,
       2-Sep-2020.)
 | 
                                                      | 
|   | 
| Theorem | mpan9 281 | 
Modus ponens conjoining dissimilar antecedents.  (Contributed by NM,
       1-Feb-2008.)  (Proof shortened by Andrew Salmon, 7-May-2011.)
 | 
                                                      | 
|   | 
| Theorem | syldan 282 | 
A syllogism deduction with conjoined antecents.  (Contributed by NM,
       24-Feb-2005.)  (Proof shortened by Wolf Lammen, 6-Apr-2013.)
 | 
                                                 
           | 
|   | 
| Theorem | sylan 283 | 
A syllogism inference.  (Contributed by NM, 21-Apr-1994.)  (Proof
       shortened by Wolf Lammen, 22-Nov-2012.)
 | 
                                                      | 
|   | 
| Theorem | sylanb 284 | 
A syllogism inference.  (Contributed by NM, 18-May-1994.)
 | 
                                           
           | 
|   | 
| Theorem | sylanbr 285 | 
A syllogism inference.  (Contributed by NM, 18-May-1994.)
 | 
                                           
           | 
|   | 
| Theorem | sylan2 286 | 
A syllogism inference.  (Contributed by NM, 21-Apr-1994.)  (Proof
       shortened by Wolf Lammen, 22-Nov-2012.)
 | 
                                                  
    | 
|   | 
| Theorem | sylan2b 287 | 
A syllogism inference.  (Contributed by NM, 21-Apr-1994.)
 | 
                                                      | 
|   | 
| Theorem | sylan2br 288 | 
A syllogism inference.  (Contributed by NM, 21-Apr-1994.)
 | 
                                                      | 
|   | 
| Theorem | syl2an 289 | 
A double syllogism inference.  (Contributed by NM, 31-Jan-1997.)
 | 
                                                           
           | 
|   | 
| Theorem | syl2anr 290 | 
A double syllogism inference.  (Contributed by NM, 17-Sep-2013.)
 | 
                                                                      | 
|   | 
| Theorem | syl2anb 291 | 
A double syllogism inference.  (Contributed by NM, 29-Jul-1999.)
 | 
                                                           
           | 
|   | 
| Theorem | syl2anbr 292 | 
A double syllogism inference.  (Contributed by NM, 29-Jul-1999.)
 | 
                                                           
           | 
|   | 
| Theorem | syland 293 | 
A syllogism deduction.  (Contributed by NM, 15-Dec-2004.)
 | 
                                                                        | 
|   | 
| Theorem | sylan2d 294 | 
A syllogism deduction.  (Contributed by NM, 15-Dec-2004.)
 | 
                                                            
            | 
|   | 
| Theorem | syl2and 295 | 
A syllogism deduction.  (Contributed by NM, 15-Dec-2004.)
 | 
                                                                              
                | 
|   | 
| Theorem | biimpa 296 | 
Inference from a logical equivalence.  (Contributed by NM,
       3-May-1994.)
 | 
                                      | 
|   | 
| Theorem | biimpar 297 | 
Inference from a logical equivalence.  (Contributed by NM,
       3-May-1994.)
 | 
                                      | 
|   | 
| Theorem | biimpac 298 | 
Inference from a logical equivalence.  (Contributed by NM,
       3-May-1994.)
 | 
                                      | 
|   | 
| Theorem | biimparc 299 | 
Inference from a logical equivalence.  (Contributed by NM,
       3-May-1994.)
 | 
                                      | 
|   | 
| Theorem | iba 300 | 
Introduction of antecedent as conjunct.  Theorem *4.73 of
     [WhiteheadRussell] p. 121. 
(Contributed by NM, 30-Mar-1994.)  (Revised by
     NM, 24-Mar-2013.)
 | 
                      |