HomeHome Intuitionistic Logic Explorer
Theorem List (p. 3 of 149)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 201-300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3imtr4i 201 A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   &    |-  ( ch 
 <-> 
 ph )   &    |-  ( th  <->  ps )   =>    |-  ( ch  ->  th )
 
Theorem3imtr3d 202 More general version of 3imtr3i 200. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  <->  th ) )   &    |-  ( ph  ->  ( ch  <->  ta ) )   =>    |-  ( ph  ->  ( th  ->  ta )
 )
 
Theorem3imtr4d 203 More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  <->  ps ) )   &    |-  ( ph  ->  ( ta  <->  ch ) )   =>    |-  ( ph  ->  ( th  ->  ta )
 )
 
Theorem3imtr3g 204 More general version of 3imtr3i 200. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ps 
 <-> 
 th )   &    |-  ( ch  <->  ta )   =>    |-  ( ph  ->  ( th  ->  ta ) )
 
Theorem3imtr4g 205 More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( th 
 <->  ps )   &    |-  ( ta  <->  ch )   =>    |-  ( ph  ->  ( th  ->  ta ) )
 
Theorem3bitri 206 A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ps  <->  ch )   &    |-  ( ch  <->  th )   =>    |-  ( ph  <->  th )
 
Theorem3bitrri 207 A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  <->  ps )   &    |-  ( ps  <->  ch )   &    |-  ( ch  <->  th )   =>    |-  ( th  <->  ph )
 
Theorem3bitr2i 208 A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ph  <->  th )
 
Theorem3bitr2ri 209 A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( th  <->  ph )
 
Theorem3bitr3i 210 A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ph  <->  ch )   &    |-  ( ps  <->  th )   =>    |-  ( ch  <->  th )
 
Theorem3bitr3ri 211 A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ph  <->  ch )   &    |-  ( ps  <->  th )   =>    |-  ( th  <->  ch )
 
Theorem3bitr4i 212 A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  ph )   &    |-  ( th  <->  ps )   =>    |-  ( ch  <->  th )
 
Theorem3bitr4ri 213 A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  ph )   &    |-  ( th  <->  ps )   =>    |-  ( th  <->  ch )
 
Theorem3bitrd 214 Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( ch  <->  th ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ps  <->  ta ) )
 
Theorem3bitrrd 215 Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( ch  <->  th ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ta  <->  ps ) )
 
Theorem3bitr2d 216 Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ps  <->  ta ) )
 
Theorem3bitr2rd 217 Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ta  <->  ps ) )
 
Theorem3bitr3d 218 Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( ps  <->  th ) )   &    |-  ( ph  ->  ( ch  <->  ta ) )   =>    |-  ( ph  ->  ( th  <->  ta ) )
 
Theorem3bitr3rd 219 Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( ps  <->  th ) )   &    |-  ( ph  ->  ( ch  <->  ta ) )   =>    |-  ( ph  ->  ( ta  <->  th ) )
 
Theorem3bitr4d 220 Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ps ) )   &    |-  ( ph  ->  ( ta  <->  ch ) )   =>    |-  ( ph  ->  ( th  <->  ta ) )
 
Theorem3bitr4rd 221 Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ps ) )   &    |-  ( ph  ->  ( ta  <->  ch ) )   =>    |-  ( ph  ->  ( ta  <->  th ) )
 
Theorem3bitr3g 222 More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ps 
 <-> 
 th )   &    |-  ( ch  <->  ta )   =>    |-  ( ph  ->  ( th 
 <->  ta ) )
 
Theorem3bitr4g 223 More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th 
 <->  ps )   &    |-  ( ta  <->  ch )   =>    |-  ( ph  ->  ( th 
 <->  ta ) )
 
Theorembi3ant 224 Construct a biconditional in antecedent position. (Contributed by Wolf Lammen, 14-May-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ( ( th  ->  ta )  -> 
 ph )  ->  (
 ( ( ta  ->  th )  ->  ps )  ->  ( ( th  <->  ta )  ->  ch )
 ) )
 
Theorembisym 225 Express symmetries of theorems in terms of biconditionals. (Contributed by Wolf Lammen, 14-May-2013.)
 |-  ( ( ( ph  ->  ps )  ->  ( ch  ->  th ) )  ->  ( ( ( ps 
 ->  ph )  ->  ( th  ->  ch ) )  ->  ( ( ph  <->  ps )  ->  ( ch 
 <-> 
 th ) ) ) )
 
Theoremimbi2i 226 Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  ->  ph )  <->  ( ch  ->  ps ) )
 
Theorembibi2i 227 Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  <->  ph )  <->  ( ch  <->  ps ) )
 
Theorembibi1i 228 Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  <->  ch )  <->  ( ps  <->  ch ) )
 
Theorembibi12i 229 The equivalence of two equivalences. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  <->  ch )  <->  ( ps  <->  th ) )
 
Theoremimbi2d 230 Deduction adding an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  ->  ps )  <->  ( th  ->  ch )
 ) )
 
Theoremimbi1d 231 Deduction adding a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  ->  th )  <->  ( ch  ->  th )
 ) )
 
Theorembibi2d 232 Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
 
Theorembibi1d 233 Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
 
Theoremimbi12d 234 Deduction joining two equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  ->  th )  <->  ( ch  ->  ta )
 ) )
 
Theorembibi12d 235 Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  ta ) ) )
 
Theoremimbi1 236 Theorem *4.84 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ph  ->  ch )  <->  ( ps  ->  ch )
 ) )
 
Theoremimbi2 237 Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ch  ->  ph )  <->  ( ch  ->  ps )
 ) )
 
Theoremimbi1i 238 Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  ->  ch )  <->  ( ps  ->  ch ) )
 
Theoremimbi12i 239 Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  ->  ch )  <->  ( ps  ->  th ) )
 
Theorembibi1 240 Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ph  <->  ch )  <->  ( ps  <->  ch ) ) )
 
Theorembiimt 241 A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
 |-  ( ph  ->  ( ps 
 <->  ( ph  ->  ps )
 ) )
 
Theorempm5.5 242 Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  ->  (
 ( ph  ->  ps )  <->  ps ) )
 
Theorema1bi 243 Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
 |-  ph   =>    |-  ( ps  <->  ( ph  ->  ps ) )
 
Theorempm5.501 244 Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 24-Jan-2013.)
 |-  ( ph  ->  ( ps 
 <->  ( ph  <->  ps ) ) )
 
Theoremibib 245 Implication in terms of implication and biconditional. (Contributed by NM, 31-Mar-1994.) (Proof shortened by Wolf Lammen, 24-Jan-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ph  ->  (
 ph 
 <->  ps ) ) )
 
Theoremibibr 246 Implication in terms of implication and biconditional. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 21-Dec-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ph  ->  ( ps  <->  ph ) ) )
 
Theoremtbt 247 A wff is equivalent to its equivalence with truth. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ph   =>    |-  ( ps  <->  ( ps  <->  ph ) )
 
Theorembi2.04 248 Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 ) 
 <->  ( ps  ->  ( ph  ->  ch ) ) )
 
Theorempm5.4 249 Antecedent absorption implication. Theorem *5.4 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  (
 ph  ->  ps ) )  <->  ( ph  ->  ps ) )
 
Theoremimdi 250 Distributive law for implication. Compare Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 ) 
 <->  ( ( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
 
Theorempm5.41 251 Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 12-Oct-2012.)
 |-  ( ( ( ph  ->  ps )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  ->  ch )
 ) )
 
Theoremimbibi 252 The antecedent of one side of a biconditional can be moved out of the biconditional to become the antecedent of the remaining biconditional. (Contributed by BJ, 1-Jan-2025.) (Proof shortened by Wolf Lammen, 5-Jan-2025.)
 |-  ( ( ( ph  ->  ps )  <->  ch )  ->  ( ph  ->  ( ps  <->  ch ) ) )
 
Theoremimim21b 253 Simplify an implication between two implications when the antecedent of the first is a consequence of the antecedent of the second. The reverse form is useful in producing the successor step in induction proofs. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Wolf Lammen, 14-Sep-2013.)
 |-  ( ( ps  ->  ph )  ->  ( (
 ( ph  ->  ch )  ->  ( ps  ->  th )
 ) 
 <->  ( ps  ->  ( ch  ->  th ) ) ) )
 
Theoremimpd 254 Importation deduction. (Contributed by NM, 31-Mar-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch )  ->  th ) )
 
Theoremimpcomd 255 Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ph  ->  ( ( ch  /\  ps )  ->  th ) )
 
Theoremimp31 256 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( (
 ph  /\  ps )  /\  ch )  ->  th )
 
Theoremimp32 257 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ph  /\  ( ps  /\  ch ) )  ->  th )
 
Theoremexpd 258 Exportation deduction. (Contributed by NM, 20-Aug-1993.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
 
Theoremexpdimp 259 A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( ch  ->  th ) )
 
Theoremimpancom 260 Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ( ph  /\  ch )  ->  ( ps  ->  th ) )
 
Theorempm3.3 261 Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  ->  ( ph  ->  ( ps  ->  ch ) ) )
 
Theorempm3.31 262 Theorem *3.31 (Imp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 )  ->  ( ( ph  /\  ps )  ->  ch ) )
 
Theoremimpexp 263 Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  <->  (
 ph  ->  ( ps  ->  ch ) ) )
 
Theorempm3.21 264 Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )
 
Theorempm3.22 265 Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ( ps  /\  ph ) )
 
Theoremancom 266 Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.)
 |-  ( ( ph  /\  ps ) 
 <->  ( ps  /\  ph )
 )
 
Theoremancomd 267 Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
 |-  ( ph  ->  ( ps  /\  ch ) )   =>    |-  ( ph  ->  ( ch  /\ 
 ps ) )
 
Theoremancoms 268 Inference commuting conjunction in antecedent. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ps  /\  ph )  ->  ch )
 
Theoremancomsd 269 Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ( ch  /\  ps )  ->  th ) )
 
Theorembiancomi 270 Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.)
 |-  ( ph  <->  ( ch  /\  ps ) )   =>    |-  ( ph  <->  ( ps  /\  ch ) )
 
Theorembiancomd 271 Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.)
 |-  ( ph  ->  ( ps 
 <->  ( th  /\  ch ) ) )   =>    |-  ( ph  ->  ( ps  <->  ( ch  /\  th ) ) )
 
Theorempm3.2i 272 Infer conjunction of premises. (Contributed by NM, 5-Aug-1993.)
 |-  ph   &    |- 
 ps   =>    |-  ( ph  /\  ps )
 
Theorempm3.43i 273 Nested conjunction of antecedents. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  ps )  ->  ( ( ph  ->  ch )  ->  ( ph  ->  ( ps  /\  ch ) ) ) )
 
Theoremsimplbi 274 Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ph  ->  ps )
 
Theoremsimprbi 275 Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ph  ->  ch )
 
Theoremadantr 276 Inference adding a conjunct to the right of an antecedent. (Contributed by NM, 30-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  ch )  ->  ps )
 
Theoremadantl 277 Inference adding a conjunct to the left of an antecedent. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ph )  ->  ps )
 
Theoremadantld 278 Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ps )  ->  ch ) )
 
Theoremadantrd 279 Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ( ps  /\  th )  ->  ch ) )
 
Theoremimpel 280 An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( th  ->  ps )   =>    |-  ( ( ph  /\  th )  ->  ch )
 
Theoremmpan9 281 Modus ponens conjoining dissimilar antecedents. (Contributed by NM, 1-Feb-2008.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  ( ps  ->  th ) )   =>    |-  ( ( ph  /\  ch )  ->  th )
 
Theoremsyldan 282 A syllogism deduction with conjoined antecents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremsylan 283 A syllogism inference. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Nov-2012.)
 |-  ( ph  ->  ps )   &    |-  (
 ( ps  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ch )  ->  th )
 
Theoremsylanb 284 A syllogism inference. (Contributed by NM, 18-May-1994.)
 |-  ( ph  <->  ps )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ph  /\  ch )  ->  th )
 
Theoremsylanbr 285 A syllogism inference. (Contributed by NM, 18-May-1994.)
 |-  ( ps  <->  ph )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ph  /\  ch )  ->  th )
 
Theoremsylan2 286 A syllogism inference. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Nov-2012.)
 |-  ( ph  ->  ch )   &    |-  (
 ( ps  /\  ch )  ->  th )   =>    |-  ( ( ps  /\  ph )  ->  th )
 
Theoremsylan2b 287 A syllogism inference. (Contributed by NM, 21-Apr-1994.)
 |-  ( ph  <->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ps  /\  ph )  ->  th )
 
Theoremsylan2br 288 A syllogism inference. (Contributed by NM, 21-Apr-1994.)
 |-  ( ch  <->  ph )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ps  /\  ph )  ->  th )
 
Theoremsyl2an 289 A double syllogism inference. (Contributed by NM, 31-Jan-1997.)
 |-  ( ph  ->  ps )   &    |-  ( ta  ->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ph  /\  ta )  ->  th )
 
Theoremsyl2anr 290 A double syllogism inference. (Contributed by NM, 17-Sep-2013.)
 |-  ( ph  ->  ps )   &    |-  ( ta  ->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ta  /\  ph )  ->  th )
 
Theoremsyl2anb 291 A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
 |-  ( ph  <->  ps )   &    |-  ( ta  <->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ph  /\  ta )  ->  th )
 
Theoremsyl2anbr 292 A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
 |-  ( ps  <->  ph )   &    |-  ( ch  <->  ta )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (
 ( ph  /\  ta )  ->  th )
 
Theoremsyland 293 A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ( ch 
 /\  th )  ->  ta )
 )   =>    |-  ( ph  ->  (
 ( ps  /\  th )  ->  ta ) )
 
Theoremsylan2d 294 A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ( th  /\ 
 ch )  ->  ta )
 )   =>    |-  ( ph  ->  (
 ( th  /\  ps )  ->  ta ) )
 
Theoremsyl2and 295 A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   &    |-  ( ph  ->  ( ( ch  /\  ta )  ->  et ) )   =>    |-  ( ph  ->  ( ( ps  /\  th )  ->  et ) )
 
Theorembiimpa 296 Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  ch )
 
Theorembiimpar 297 Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\ 
 ch )  ->  ps )
 
Theorembiimpac 298 Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ps 
 /\  ph )  ->  ch )
 
Theorembiimparc 299 Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ch 
 /\  ph )  ->  ps )
 
Theoremiba 300 Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) (Revised by NM, 24-Mar-2013.)
 |-  ( ph  ->  ( ps 
 <->  ( ps  /\  ph )
 ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14801
  Copyright terms: Public domain < Previous  Next >