![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbi1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbi1 236 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imbi12i 239 ancomsimp 1440 sbrim 1956 sbal1yz 2001 sbmo 2085 mo4f 2086 moanim 2100 necon4addc 2417 necon1bddc 2424 nfraldya 2512 r3al 2521 r19.23t 2584 ceqsralt 2766 ralab 2899 ralrab 2900 euind 2926 reu2 2927 rmo4 2932 rmo3f 2936 rmo4f 2937 reuind 2944 rmo3 3056 dfdif3 3247 raldifb 3277 unss 3311 ralunb 3318 inssdif0im 3492 ssundifim 3508 raaan 3531 pwss 3593 ralsnsg 3631 ralsns 3632 disjsn 3656 snssOLD 3720 snssb 3727 unissb 3841 intun 3877 intpr 3878 dfiin2g 3921 dftr2 4105 repizf2lem 4163 axpweq 4173 zfpow 4177 axpow2 4178 zfun 4436 uniex2 4438 setindel 4539 setind 4540 elirr 4542 en2lp 4555 zfregfr 4575 tfi 4583 raliunxp 4770 dffun2 5228 dffun4 5229 dffun4f 5234 dffun7 5245 funcnveq 5281 fununi 5286 pw1dc0el 6913 fiintim 6930 addnq0mo 7448 mulnq0mo 7449 addsrmo 7744 mulsrmo 7745 prime 9354 raluz2 9581 ralrp 9677 modfsummod 11468 nnwosdc 12042 isprm4 12121 dedekindicclemicc 14149 bdcriota 14674 bj-uniex2 14707 bj-ssom 14727 |
Copyright terms: Public domain | W3C validator |