| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 |
|
| Ref | Expression |
|---|---|
| imbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 |
. 2
| |
| 2 | imbi1 236 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1461 sbrim 1985 sbal1yz 2030 sbmo 2115 mo4f 2116 moanim 2130 necon4addc 2448 necon1bddc 2455 nfraldya 2543 r3al 2552 r19.23t 2615 ceqsralt 2804 ralab 2940 ralrab 2941 euind 2967 reu2 2968 rmo4 2973 rmo3f 2977 rmo4f 2978 reuind 2985 rmo3 3098 dfdif3 3291 raldifb 3321 unss 3355 ralunb 3362 inssdif0im 3536 ssundifim 3552 raaan 3574 pwss 3642 ralsnsg 3680 ralsns 3681 disjsn 3705 snssOLD 3770 snssb 3777 unissb 3894 intun 3930 intpr 3931 dfiin2g 3974 dftr2 4160 repizf2lem 4221 axpweq 4231 zfpow 4235 axpow2 4236 zfun 4499 uniex2 4501 setindel 4604 setind 4605 elirr 4607 en2lp 4620 zfregfr 4640 tfi 4648 raliunxp 4837 dffun2 5300 dffun4 5301 dffun4f 5306 dffun7 5317 funcnveq 5356 fununi 5361 pw1dc0el 7034 fiintim 7054 addnq0mo 7595 mulnq0mo 7596 addsrmo 7891 mulsrmo 7892 prime 9507 raluz2 9735 ralrp 9832 modfsummod 11884 nnwosdc 12475 isprm4 12556 dedekindicclemicc 15219 bdcriota 16018 bj-uniex2 16051 bj-ssom 16071 |
| Copyright terms: Public domain | W3C validator |