| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 |
|
| Ref | Expression |
|---|---|
| imbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 |
. 2
| |
| 2 | imbi1 236 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1460 sbrim 1984 sbal1yz 2029 sbmo 2113 mo4f 2114 moanim 2128 necon4addc 2446 necon1bddc 2453 nfraldya 2541 r3al 2550 r19.23t 2613 ceqsralt 2799 ralab 2933 ralrab 2934 euind 2960 reu2 2961 rmo4 2966 rmo3f 2970 rmo4f 2971 reuind 2978 rmo3 3090 dfdif3 3283 raldifb 3313 unss 3347 ralunb 3354 inssdif0im 3528 ssundifim 3544 raaan 3566 pwss 3632 ralsnsg 3670 ralsns 3671 disjsn 3695 snssOLD 3759 snssb 3766 unissb 3880 intun 3916 intpr 3917 dfiin2g 3960 dftr2 4145 repizf2lem 4206 axpweq 4216 zfpow 4220 axpow2 4221 zfun 4482 uniex2 4484 setindel 4587 setind 4588 elirr 4590 en2lp 4603 zfregfr 4623 tfi 4631 raliunxp 4820 dffun2 5282 dffun4 5283 dffun4f 5288 dffun7 5299 funcnveq 5338 fununi 5343 pw1dc0el 7010 fiintim 7030 addnq0mo 7562 mulnq0mo 7563 addsrmo 7858 mulsrmo 7859 prime 9474 raluz2 9702 ralrp 9799 modfsummod 11802 nnwosdc 12393 isprm4 12474 dedekindicclemicc 15137 bdcriota 15856 bj-uniex2 15889 bj-ssom 15909 |
| Copyright terms: Public domain | W3C validator |