![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbi1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbi1 236 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imbi12i 239 ancomsimp 1451 sbrim 1972 sbal1yz 2017 sbmo 2101 mo4f 2102 moanim 2116 necon4addc 2434 necon1bddc 2441 nfraldya 2529 r3al 2538 r19.23t 2601 ceqsralt 2787 ralab 2921 ralrab 2922 euind 2948 reu2 2949 rmo4 2954 rmo3f 2958 rmo4f 2959 reuind 2966 rmo3 3078 dfdif3 3270 raldifb 3300 unss 3334 ralunb 3341 inssdif0im 3515 ssundifim 3531 raaan 3553 pwss 3618 ralsnsg 3656 ralsns 3657 disjsn 3681 snssOLD 3745 snssb 3752 unissb 3866 intun 3902 intpr 3903 dfiin2g 3946 dftr2 4130 repizf2lem 4191 axpweq 4201 zfpow 4205 axpow2 4206 zfun 4466 uniex2 4468 setindel 4571 setind 4572 elirr 4574 en2lp 4587 zfregfr 4607 tfi 4615 raliunxp 4804 dffun2 5265 dffun4 5266 dffun4f 5271 dffun7 5282 funcnveq 5318 fununi 5323 pw1dc0el 6969 fiintim 6987 addnq0mo 7509 mulnq0mo 7510 addsrmo 7805 mulsrmo 7806 prime 9419 raluz2 9647 ralrp 9744 modfsummod 11604 nnwosdc 12179 isprm4 12260 dedekindicclemicc 14811 bdcriota 15445 bj-uniex2 15478 bj-ssom 15498 |
Copyright terms: Public domain | W3C validator |