| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 |
|
| Ref | Expression |
|---|---|
| imbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 |
. 2
| |
| 2 | imbi1 236 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1451 sbrim 1975 sbal1yz 2020 sbmo 2104 mo4f 2105 moanim 2119 necon4addc 2437 necon1bddc 2444 nfraldya 2532 r3al 2541 r19.23t 2604 ceqsralt 2790 ralab 2924 ralrab 2925 euind 2951 reu2 2952 rmo4 2957 rmo3f 2961 rmo4f 2962 reuind 2969 rmo3 3081 dfdif3 3274 raldifb 3304 unss 3338 ralunb 3345 inssdif0im 3519 ssundifim 3535 raaan 3557 pwss 3622 ralsnsg 3660 ralsns 3661 disjsn 3685 snssOLD 3749 snssb 3756 unissb 3870 intun 3906 intpr 3907 dfiin2g 3950 dftr2 4134 repizf2lem 4195 axpweq 4205 zfpow 4209 axpow2 4210 zfun 4470 uniex2 4472 setindel 4575 setind 4576 elirr 4578 en2lp 4591 zfregfr 4611 tfi 4619 raliunxp 4808 dffun2 5269 dffun4 5270 dffun4f 5275 dffun7 5286 funcnveq 5322 fununi 5327 pw1dc0el 6981 fiintim 7001 addnq0mo 7531 mulnq0mo 7532 addsrmo 7827 mulsrmo 7828 prime 9442 raluz2 9670 ralrp 9767 modfsummod 11640 nnwosdc 12231 isprm4 12312 dedekindicclemicc 14952 bdcriota 15613 bj-uniex2 15646 bj-ssom 15666 |
| Copyright terms: Public domain | W3C validator |