| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| imbi1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| imbi1i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imbi1i.1 | 
. 2
 | |
| 2 | imbi1 236 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: imbi12i 239 ancomsimp 1451 sbrim 1975 sbal1yz 2020 sbmo 2104 mo4f 2105 moanim 2119 necon4addc 2437 necon1bddc 2444 nfraldya 2532 r3al 2541 r19.23t 2604 ceqsralt 2790 ralab 2924 ralrab 2925 euind 2951 reu2 2952 rmo4 2957 rmo3f 2961 rmo4f 2962 reuind 2969 rmo3 3081 dfdif3 3273 raldifb 3303 unss 3337 ralunb 3344 inssdif0im 3518 ssundifim 3534 raaan 3556 pwss 3621 ralsnsg 3659 ralsns 3660 disjsn 3684 snssOLD 3748 snssb 3755 unissb 3869 intun 3905 intpr 3906 dfiin2g 3949 dftr2 4133 repizf2lem 4194 axpweq 4204 zfpow 4208 axpow2 4209 zfun 4469 uniex2 4471 setindel 4574 setind 4575 elirr 4577 en2lp 4590 zfregfr 4610 tfi 4618 raliunxp 4807 dffun2 5268 dffun4 5269 dffun4f 5274 dffun7 5285 funcnveq 5321 fununi 5326 pw1dc0el 6972 fiintim 6992 addnq0mo 7514 mulnq0mo 7515 addsrmo 7810 mulsrmo 7811 prime 9425 raluz2 9653 ralrp 9750 modfsummod 11623 nnwosdc 12206 isprm4 12287 dedekindicclemicc 14868 bdcriota 15529 bj-uniex2 15562 bj-ssom 15582 | 
| Copyright terms: Public domain | W3C validator |