| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 |
|
| Ref | Expression |
|---|---|
| imbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 |
. 2
| |
| 2 | imbi1 236 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1483 sbrim 2007 sbal1yz 2052 sbmo 2137 mo4f 2138 moanim 2152 necon4addc 2470 necon1bddc 2477 nfraldya 2565 r3al 2574 r19.23t 2638 ceqsralt 2827 ralab 2963 ralrab 2964 euind 2990 reu2 2991 rmo4 2996 rmo3f 3000 rmo4f 3001 reuind 3008 rmo3 3121 dfdif3 3314 raldifb 3344 unss 3378 ralunb 3385 inssdif0im 3559 ssundifim 3575 raaan 3597 pwss 3665 ralsnsg 3703 ralsns 3704 disjsn 3728 snssOLD 3794 snssb 3801 unissb 3918 intun 3954 intpr 3955 dfiin2g 3998 dftr2 4184 repizf2lem 4245 axpweq 4255 zfpow 4259 axpow2 4260 zfun 4525 uniex2 4527 setindel 4630 setind 4631 elirr 4633 en2lp 4646 zfregfr 4666 tfi 4674 raliunxp 4863 dffun2 5328 dffun4 5329 dffun4f 5334 dffun7 5345 funcnveq 5384 fununi 5389 pw1dc0el 7073 fiintim 7093 addnq0mo 7634 mulnq0mo 7635 addsrmo 7930 mulsrmo 7931 prime 9546 raluz2 9774 ralrp 9871 modfsummod 11969 nnwosdc 12560 isprm4 12641 dedekindicclemicc 15306 bdcriota 16246 bj-uniex2 16279 bj-ssom 16299 |
| Copyright terms: Public domain | W3C validator |