![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbi1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbi1 236 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imbi12i 239 ancomsimp 1451 sbrim 1972 sbal1yz 2017 sbmo 2101 mo4f 2102 moanim 2116 necon4addc 2434 necon1bddc 2441 nfraldya 2529 r3al 2538 r19.23t 2601 ceqsralt 2787 ralab 2920 ralrab 2921 euind 2947 reu2 2948 rmo4 2953 rmo3f 2957 rmo4f 2958 reuind 2965 rmo3 3077 dfdif3 3269 raldifb 3299 unss 3333 ralunb 3340 inssdif0im 3514 ssundifim 3530 raaan 3552 pwss 3617 ralsnsg 3655 ralsns 3656 disjsn 3680 snssOLD 3744 snssb 3751 unissb 3865 intun 3901 intpr 3902 dfiin2g 3945 dftr2 4129 repizf2lem 4190 axpweq 4200 zfpow 4204 axpow2 4205 zfun 4465 uniex2 4467 setindel 4570 setind 4571 elirr 4573 en2lp 4586 zfregfr 4606 tfi 4614 raliunxp 4803 dffun2 5264 dffun4 5265 dffun4f 5270 dffun7 5281 funcnveq 5317 fununi 5322 pw1dc0el 6967 fiintim 6985 addnq0mo 7507 mulnq0mo 7508 addsrmo 7803 mulsrmo 7804 prime 9416 raluz2 9644 ralrp 9741 modfsummod 11601 nnwosdc 12176 isprm4 12257 dedekindicclemicc 14786 bdcriota 15375 bj-uniex2 15408 bj-ssom 15428 |
Copyright terms: Public domain | W3C validator |