| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | Unicode version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 |
|
| Ref | Expression |
|---|---|
| imbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 |
. 2
| |
| 2 | imbi1 236 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1460 sbrim 1984 sbal1yz 2029 sbmo 2113 mo4f 2114 moanim 2128 necon4addc 2446 necon1bddc 2453 nfraldya 2541 r3al 2550 r19.23t 2613 ceqsralt 2799 ralab 2933 ralrab 2934 euind 2960 reu2 2961 rmo4 2966 rmo3f 2970 rmo4f 2971 reuind 2978 rmo3 3090 dfdif3 3283 raldifb 3313 unss 3347 ralunb 3354 inssdif0im 3528 ssundifim 3544 raaan 3566 pwss 3632 ralsnsg 3670 ralsns 3671 disjsn 3695 snssOLD 3759 snssb 3766 unissb 3880 intun 3916 intpr 3917 dfiin2g 3960 dftr2 4144 repizf2lem 4205 axpweq 4215 zfpow 4219 axpow2 4220 zfun 4481 uniex2 4483 setindel 4586 setind 4587 elirr 4589 en2lp 4602 zfregfr 4622 tfi 4630 raliunxp 4819 dffun2 5281 dffun4 5282 dffun4f 5287 dffun7 5298 funcnveq 5337 fununi 5342 pw1dc0el 7008 fiintim 7028 addnq0mo 7560 mulnq0mo 7561 addsrmo 7856 mulsrmo 7857 prime 9472 raluz2 9700 ralrp 9797 modfsummod 11769 nnwosdc 12360 isprm4 12441 dedekindicclemicc 15104 bdcriota 15823 bj-uniex2 15856 bj-ssom 15876 |
| Copyright terms: Public domain | W3C validator |