ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp42 Unicode version

Theorem imp42 352
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
imp42  |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ta )

Proof of Theorem imp42
StepHypRef Expression
1 imp4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21imp32 255 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  -> 
( th  ->  ta ) )
32imp 123 1  |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  imp55  359  txbas  12658
  Copyright terms: Public domain W3C validator