ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp32 Unicode version

Theorem imp32 257
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
imp32  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )

Proof of Theorem imp32
StepHypRef Expression
1 imp3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21impd 254 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
32imp 124 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp42  354  impr  379  anasss  399  an13s  567  3expb  1206  reuss2  3443  reupick  3447  po2nr  4344  fvmptt  5653  fliftfund  5844  f1ocnv2d  6127  addclpi  7394  addnidpig  7403  mulnqprl  7635  mulnqpru  7636  ltsubrp  9765  ltaddrp  9766  divgcdcoprm0  12269  infpnlem1  12528  imasgrp2  13240  imasrng  13512  imasring  13620  innei  14399  tgcnp  14445  isxmetd  14583  2lgslem1a1  15327
  Copyright terms: Public domain W3C validator