ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jcn Unicode version

Theorem jcn 624
Description: Inference joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
jcn.1  |-  ( ph  ->  ps )
jcn.2  |-  ( ph  ->  -.  ch )
Assertion
Ref Expression
jcn  |-  ( ph  ->  -.  ( ps  ->  ch ) )

Proof of Theorem jcn
StepHypRef Expression
1 jcn.1 . . 3  |-  ( ph  ->  ps )
2 jcn.2 . . 3  |-  ( ph  ->  -.  ch )
31, 2jc 623 . 2  |-  ( ph  ->  -.  ( ps  ->  -. 
-.  ch ) )
4 notnot 601 . . 3  |-  ( ch 
->  -.  -.  ch )
54imim2i 12 . 2  |-  ( ( ps  ->  ch )  ->  ( ps  ->  -.  -.  ch ) )
63, 5nsyl 600 1  |-  ( ph  ->  -.  ( ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 586  ax-in2 587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator