ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.27 Unicode version

Theorem pm2.27 40
Description: This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 5. Theorem *2.27 of [WhiteheadRussell] p. 104. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm2.27  |-  ( ph  ->  ( ( ph  ->  ps )  ->  ps )
)

Proof of Theorem pm2.27
StepHypRef Expression
1 id 19 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21com12 30 1  |-  ( ph  ->  ( ( ph  ->  ps )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.43  53  com23  78  biimt  240  pm3.35  345  pm3.2im  627  jcn  641  pm2.65  649  annimim  676  condcOLD  840  pm2.26dc  893  ax10o  1695  issref  4965  acexmidlem2  5815  findcard2  6827  findcard2s  6828  xpfi  6867  exmidontriim  7143  txlm  12639  bj-inf2vnlem1  13504  bj-findis  13513
  Copyright terms: Public domain W3C validator