ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp3anl3 Unicode version

Theorem mp3anl3 1323
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
mp3anl3.1  |-  ch
mp3anl3.2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
Assertion
Ref Expression
mp3anl3  |-  ( ( ( ph  /\  ps )  /\  th )  ->  ta )

Proof of Theorem mp3anl3
StepHypRef Expression
1 mp3anl3.1 . . 3  |-  ch
2 mp3anl3.2 . . . 4  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
32ex 114 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  ->  ta ) )
41, 3mp3an3 1316 . 2  |-  ( (
ph  /\  ps )  ->  ( th  ->  ta ) )
54imp 123 1  |-  ( ( ( ph  /\  ps )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  mp3anr3  1326
  Copyright terms: Public domain W3C validator