Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3anl3 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
mp3anl3.1 | ⊢ 𝜒 |
mp3anl3.2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3anl3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anl3.1 | . . 3 ⊢ 𝜒 | |
2 | mp3anl3.2 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
3 | 2 | ex 114 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
4 | 1, 3 | mp3an3 1316 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜃 → 𝜏)) |
5 | 4 | imp 123 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mp3anr3 1326 |
Copyright terms: Public domain | W3C validator |