Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an3 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | |
mp3an3.2 |
Ref | Expression |
---|---|
mp3an3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 | |
2 | mp3an3.2 | . . 3 | |
3 | 2 | 3expia 1187 | . 2 |
4 | 1, 3 | mpi 15 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: mp3an13 1310 mp3an23 1311 mp3anl3 1315 opelxp 4613 funimaexg 5251 ov 5934 ovmpoa 5945 ovmpo 5950 ovtposg 6200 oaword1 6411 th3q 6578 enrefg 6702 f1imaen 6732 mapxpen 6786 pw1fin 6848 xpfi 6867 djucomen 7134 addnnnq0 7352 mulnnnq0 7353 prarloclemcalc 7405 genpelxp 7414 genpprecll 7417 genppreclu 7418 addsrpr 7648 mulsrpr 7649 gt0srpr 7651 mulid1 7858 ltneg 8320 leneg 8323 suble0 8334 div1 8559 nnaddcl 8836 nnmulcl 8837 nnge1 8839 nnsub 8855 2halves 9045 halfaddsub 9050 addltmul 9052 zleltp1 9205 nnaddm1cl 9211 zextlt 9239 peano5uzti 9255 eluzp1p1 9447 uzaddcl 9480 znq 9515 xrre 9706 xrre2 9707 fzshftral 9992 expn1ap0 10411 expadd 10443 expmul 10446 expubnd 10458 sqmul 10463 bernneq 10520 sqrecapd 10537 faclbnd2 10598 faclbnd6 10600 fihashssdif 10674 shftval3 10709 caucvgre 10863 leabs 10956 ltabs 10969 caubnd2 10999 efexp 11561 efival 11611 cos01gt0 11641 odd2np1 11745 halfleoddlt 11766 omoe 11768 opeo 11769 gcdmultiple 11884 sqgcd 11893 nn0seqcvgd 11898 phiprmpw 12074 eulerthlemth 12084 ntrin 12484 txuni2 12616 txopn 12625 xblpnfps 12758 xblpnf 12759 bl2in 12763 unirnblps 12782 unirnbl 12783 blpnfctr 12799 sincosq1eq 13120 rpcxpp1 13187 rplogb1 13225 |
Copyright terms: Public domain | W3C validator |