Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an3 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 | |
mp3an3.2 |
Ref | Expression |
---|---|
mp3an3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 | . 2 | |
2 | mp3an3.2 | . . 3 | |
3 | 2 | 3expia 1195 | . 2 |
4 | 1, 3 | mpi 15 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mp3an13 1318 mp3an23 1319 mp3anl3 1323 opelxp 4633 funimaexg 5271 ov 5957 ovmpoa 5968 ovmpo 5973 ovtposg 6223 oaword1 6435 th3q 6602 enrefg 6726 f1imaen 6756 mapxpen 6810 pw1fin 6872 xpfi 6891 djucomen 7168 addnnnq0 7386 mulnnnq0 7387 prarloclemcalc 7439 genpelxp 7448 genpprecll 7451 genppreclu 7452 addsrpr 7682 mulsrpr 7683 gt0srpr 7685 mulid1 7892 ltneg 8356 leneg 8359 suble0 8370 div1 8595 nnaddcl 8873 nnmulcl 8874 nnge1 8876 nnsub 8892 2halves 9082 halfaddsub 9087 addltmul 9089 zleltp1 9242 nnaddm1cl 9248 zextlt 9279 peano5uzti 9295 eluzp1p1 9487 uzaddcl 9520 znq 9558 xrre 9752 xrre2 9753 fzshftral 10039 expn1ap0 10461 expadd 10493 expmul 10496 expubnd 10508 sqmul 10513 bernneq 10571 sqrecapd 10588 faclbnd2 10651 faclbnd6 10653 fihashssdif 10727 shftval3 10765 caucvgre 10919 leabs 11012 ltabs 11025 caubnd2 11055 efexp 11619 efival 11669 cos01gt0 11699 odd2np1 11806 halfleoddlt 11827 omoe 11829 opeo 11830 gcdmultiple 11949 sqgcd 11958 nn0seqcvgd 11969 phiprmpw 12150 eulerthlemth 12160 odzcllem 12170 pcelnn 12248 4sqlem3 12316 ntrin 12724 txuni2 12856 txopn 12865 xblpnfps 12998 xblpnf 12999 bl2in 13003 unirnblps 13022 unirnbl 13023 blpnfctr 13039 sincosq1eq 13360 rpcxpp1 13427 rplogb1 13466 |
Copyright terms: Public domain | W3C validator |