![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an3 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an3.1 |
![]() ![]() |
mp3an3.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp3an3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3.1 |
. 2
![]() ![]() | |
2 | mp3an3.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3expia 1146 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpi 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: mp3an13 1265 mp3an23 1266 mp3anl3 1270 opelxp 4481 funimaexg 5111 ov 5778 ovmpt2a 5789 ovmpt2 5794 ovtposg 6038 oaword1 6246 th3q 6411 enrefg 6535 f1imaen 6565 mapxpen 6618 xpfi 6694 addnnnq0 7069 mulnnnq0 7070 prarloclemcalc 7122 genpelxp 7131 genpprecll 7134 genppreclu 7135 addsrpr 7352 mulsrpr 7353 gt0srpr 7355 mulid1 7546 ltneg 8001 leneg 8004 suble0 8015 div1 8231 nnaddcl 8503 nnmulcl 8504 nnge1 8506 nnsub 8522 2halves 8706 halfaddsub 8711 addltmul 8713 zleltp1 8866 nnaddm1cl 8872 zextlt 8899 peano5uzti 8915 eluzp1p1 9105 uzaddcl 9135 znq 9170 xrre 9343 xrre2 9344 fzshftral 9583 expn1ap0 10026 expadd 10058 expmul 10061 expubnd 10073 sqmul 10078 bernneq 10135 sqrecapd 10151 faclbnd2 10211 faclbnd6 10213 fihashssdif 10287 shftval3 10322 caucvgre 10475 leabs 10568 ltabs 10581 caubnd2 10611 efexp 11033 efival 11084 cos01gt0 11114 odd2np1 11212 halfleoddlt 11233 omoe 11235 opeo 11236 gcdmultiple 11348 sqgcd 11357 nn0seqcvgd 11362 phiprmpw 11537 ntrin 11885 |
Copyright terms: Public domain | W3C validator |