ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1abiidc Unicode version

Theorem necon1abiidc 2387
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon1abiidc.1  |-  (DECID  ph  ->  ( -.  ph  <->  A  =  B
) )
Assertion
Ref Expression
necon1abiidc  |-  (DECID  ph  ->  ( A  =/=  B  <->  ph ) )

Proof of Theorem necon1abiidc
StepHypRef Expression
1 df-ne 2328 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon1abiidc.1 . . 3  |-  (DECID  ph  ->  ( -.  ph  <->  A  =  B
) )
32con1biidc 863 . 2  |-  (DECID  ph  ->  ( -.  A  =  B  <->  ph ) )
41, 3syl5bb 191 1  |-  (DECID  ph  ->  ( A  =/=  B  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 820    = wceq 1335    =/= wne 2327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 821  df-ne 2328
This theorem is referenced by:  necon2abiidc  2391
  Copyright terms: Public domain W3C validator