Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1abiidc GIF version

Theorem necon1abiidc 2366
 Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon1abiidc.1 (DECID 𝜑 → (¬ 𝜑𝐴 = 𝐵))
Assertion
Ref Expression
necon1abiidc (DECID 𝜑 → (𝐴𝐵𝜑))

Proof of Theorem necon1abiidc
StepHypRef Expression
1 df-ne 2307 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1abiidc.1 . . 3 (DECID 𝜑 → (¬ 𝜑𝐴 = 𝐵))
32con1biidc 862 . 2 (DECID 𝜑 → (¬ 𝐴 = 𝐵𝜑))
41, 3syl5bb 191 1 (DECID 𝜑 → (𝐴𝐵𝜑))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 104  DECID wdc 819   = wceq 1331   ≠ wne 2306 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698 This theorem depends on definitions:  df-bi 116  df-dc 820  df-ne 2307 This theorem is referenced by:  necon2abiidc  2370
 Copyright terms: Public domain W3C validator