ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neqcomd Unicode version

Theorem neqcomd 2170
Description: Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
neqcomd.1  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
neqcomd  |-  ( ph  ->  -.  B  =  A )

Proof of Theorem neqcomd
StepHypRef Expression
1 neqcomd.1 . 2  |-  ( ph  ->  -.  A  =  B )
2 eqcom 2167 . 2  |-  ( A  =  B  <->  B  =  A )
31, 2sylnib 666 1  |-  ( ph  ->  -.  B  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  logbgcd1irraplemexp  13486
  Copyright terms: Public domain W3C validator