Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neqcomd | Unicode version |
Description: Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
neqcomd.1 |
Ref | Expression |
---|---|
neqcomd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqcomd.1 | . 2 | |
2 | eqcom 2167 | . 2 | |
3 | 1, 2 | sylnib 666 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: logbgcd1irraplemexp 13486 |
Copyright terms: Public domain | W3C validator |