ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp Unicode version

Theorem logbgcd1irraplemexp 13526
Description: Lemma for logbgcd1irrap 13528. Apartness of  X ^ N and  B ^ M. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.b  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.rp  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
logbgcd1irraplem.m  |-  ( ph  ->  M  e.  ZZ )
logbgcd1irraplem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
logbgcd1irraplemexp  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
2 logbgcd1irraplem.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
3 eluz2nn 9504 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
42, 3syl 14 . . . . . . . . 9  |-  ( ph  ->  X  e.  NN )
5 logbgcd1irraplem.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
6 eluz2nn 9504 . . . . . . . . . 10  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  B  e.  NN )
8 logbgcd1irraplem.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
9 rplpwr 11960 . . . . . . . . 9  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
104, 7, 8, 9syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( ( X  gcd  B )  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
111, 10mpd 13 . . . . . . 7  |-  ( ph  ->  ( ( X ^ N )  gcd  B
)  =  1 )
1211ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( X ^ N
)  gcd  B )  =  1 )
13 1red 7914 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  RR )
14 eluz2gt1 9540 . . . . . . . . . . . . . 14  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
155, 14syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <  B )
1613, 15gtned 8011 . . . . . . . . . . . 12  |-  ( ph  ->  B  =/=  1 )
1716neneqd 2357 . . . . . . . . . . 11  |-  ( ph  ->  -.  B  =  1 )
187nnzd 9312 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ZZ )
19 gcdid 11919 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
2018, 19syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  gcd  B
)  =  ( abs `  B ) )
217nnred 8870 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
227nnnn0d 9167 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
2322nn0ge0d 9170 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <_  B )
2421, 23absidd 11109 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  B
)  =  B )
2520, 24eqtrd 2198 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  gcd  B
)  =  B )
2625eqeq1d 2174 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  gcd  B )  =  1  <->  B  =  1 ) )
2717, 26mtbird 663 . . . . . . . . . 10  |-  ( ph  ->  -.  ( B  gcd  B )  =  1 )
2827adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B  gcd  B )  =  1 )
2918adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  B  e.  ZZ )
30 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  M  e.  NN )
31 rpexp 12085 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( ( B ^ M )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
3229, 29, 30, 31syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( ( B ^ M
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
3328, 32mtbird 663 . . . . . . . 8  |-  ( (
ph  /\  M  e.  NN )  ->  -.  (
( B ^ M
)  gcd  B )  =  1 )
3433adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( B ^ M )  gcd  B
)  =  1 )
35 oveq1 5849 . . . . . . . . . 10  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( X ^ N
)  gcd  B )  =  ( ( B ^ M )  gcd 
B ) )
3635eqeq1d 2174 . . . . . . . . 9  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3736eqcoms 2168 . . . . . . . 8  |-  ( ( B ^ M )  =  ( X ^ N )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3837adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3934, 38mtbird 663 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( X ^ N )  gcd  B
)  =  1 )
4012, 39pm2.65da 651 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B ^ M )  =  ( X ^ N
) )
4140neqcomd 2170 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( X ^ N )  =  ( B ^ M
) )
4241neqned 2343 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  =/=  ( B ^ M
) )
434nnzd 9312 . . . . . 6  |-  ( ph  ->  X  e.  ZZ )
4443adantr 274 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  X  e.  ZZ )
458nnnn0d 9167 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
4645adantr 274 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  N  e. 
NN0 )
47 zexpcl 10470 . . . . 5  |-  ( ( X  e.  ZZ  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  ZZ )
4844, 46, 47syl2anc 409 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  e.  ZZ )
4930nnnn0d 9167 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  M  e. 
NN0 )
50 zexpcl 10470 . . . . 5  |-  ( ( B  e.  ZZ  /\  M  e.  NN0 )  -> 
( B ^ M
)  e.  ZZ )
5129, 49, 50syl2anc 409 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( B ^ M )  e.  ZZ )
52 zapne 9265 . . . 4  |-  ( ( ( X ^ N
)  e.  ZZ  /\  ( B ^ M )  e.  ZZ )  -> 
( ( X ^ N ) #  ( B ^ M )  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5348, 51, 52syl2anc 409 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( X ^ N ) #  ( B ^ M
)  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5442, 53mpbird 166 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N ) #  ( B ^ M ) )
557nnrpd 9630 . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
5655adantr 274 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR+ )
57 logbgcd1irraplem.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
5857adantr 274 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  M  e.  ZZ )
5956, 58rpexpcld 10612 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR+ )
6059rpred 9632 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR )
614nnred 8870 . . . . 5  |-  ( ph  ->  X  e.  RR )
6261, 45reexpcld 10605 . . . 4  |-  ( ph  ->  ( X ^ N
)  e.  RR )
6362adantr 274 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N )  e.  RR )
64 1red 7914 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR )
65 1rp 9593 . . . . . . 7  |-  1  e.  RR+
6665a1i 9 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR+ )
6721adantr 274 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR )
68 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  -u M  e.  NN0 )
697nnge1d 8900 . . . . . . . . 9  |-  ( ph  ->  1  <_  B )
7069adantr 274 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  B )
7167, 68, 70expge1d 10607 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( B ^ -u M
) )
7267recnd 7927 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  CC )
737nnap0d 8903 . . . . . . . . 9  |-  ( ph  ->  B #  0 )
7473adantr 274 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B #  0 )
7572, 74, 58expnegapd 10595 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ -u M )  =  ( 1  / 
( B ^ M
) ) )
7671, 75breqtrd 4008 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( 1  /  ( B ^ M ) ) )
7766, 59, 76lerec2d 9654 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
( 1  /  1
) )
78 1div1e1 8600 . . . . 5  |-  ( 1  /  1 )  =  1
7977, 78breqtrdi 4023 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
1 )
80 eluz2gt1 9540 . . . . . . 7  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
812, 80syl 14 . . . . . 6  |-  ( ph  ->  1  <  X )
82 expgt1 10493 . . . . . 6  |-  ( ( X  e.  RR  /\  N  e.  NN  /\  1  <  X )  ->  1  <  ( X ^ N
) )
8361, 8, 81, 82syl3anc 1228 . . . . 5  |-  ( ph  ->  1  <  ( X ^ N ) )
8483adantr 274 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <  ( X ^ N
) )
8560, 64, 63, 79, 84lelttrd 8023 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  < 
( X ^ N
) )
8660, 63, 85gtapd 8535 . 2  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N ) #  ( B ^ M ) )
87 elznn 9207 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8857, 87sylib 121 . . 3  |-  ( ph  ->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8988simprd 113 . 2  |-  ( ph  ->  ( M  e.  NN  \/  -u M  e.  NN0 ) )
9054, 86, 89mpjaodan 788 1  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    < clt 7933    <_ cle 7934   -ucneg 8070   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   RR+crp 9589   ^cexp 10454   abscabs 10939    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040
This theorem is referenced by:  logbgcd1irraplemap  13527
  Copyright terms: Public domain W3C validator