| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > logbgcd1irraplemexp | Unicode version | ||
| Description: Lemma for logbgcd1irrap 15557. Apartness of |
| Ref | Expression |
|---|---|
| logbgcd1irraplem.x |
|
| logbgcd1irraplem.b |
|
| logbgcd1irraplem.rp |
|
| logbgcd1irraplem.m |
|
| logbgcd1irraplem.n |
|
| Ref | Expression |
|---|---|
| logbgcd1irraplemexp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logbgcd1irraplem.rp |
. . . . . . . 8
| |
| 2 | logbgcd1irraplem.x |
. . . . . . . . . 10
| |
| 3 | eluz2nn 9722 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . . 9
|
| 5 | logbgcd1irraplem.b |
. . . . . . . . . 10
| |
| 6 | eluz2nn 9722 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | logbgcd1irraplem.n |
. . . . . . . . 9
| |
| 9 | rplpwr 12463 |
. . . . . . . . 9
| |
| 10 | 4, 7, 8, 9 | syl3anc 1250 |
. . . . . . . 8
|
| 11 | 1, 10 | mpd 13 |
. . . . . . 7
|
| 12 | 11 | ad2antrr 488 |
. . . . . 6
|
| 13 | 1red 8122 |
. . . . . . . . . . . . 13
| |
| 14 | eluz2gt1 9758 |
. . . . . . . . . . . . . 14
| |
| 15 | 5, 14 | syl 14 |
. . . . . . . . . . . . 13
|
| 16 | 13, 15 | gtned 8220 |
. . . . . . . . . . . 12
|
| 17 | 16 | neneqd 2399 |
. . . . . . . . . . 11
|
| 18 | 7 | nnzd 9529 |
. . . . . . . . . . . . . 14
|
| 19 | gcdid 12422 |
. . . . . . . . . . . . . 14
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . . . . . 13
|
| 21 | 7 | nnred 9084 |
. . . . . . . . . . . . . 14
|
| 22 | 7 | nnnn0d 9383 |
. . . . . . . . . . . . . . 15
|
| 23 | 22 | nn0ge0d 9386 |
. . . . . . . . . . . . . 14
|
| 24 | 21, 23 | absidd 11593 |
. . . . . . . . . . . . 13
|
| 25 | 20, 24 | eqtrd 2240 |
. . . . . . . . . . . 12
|
| 26 | 25 | eqeq1d 2216 |
. . . . . . . . . . 11
|
| 27 | 17, 26 | mtbird 675 |
. . . . . . . . . 10
|
| 28 | 27 | adantr 276 |
. . . . . . . . 9
|
| 29 | 18 | adantr 276 |
. . . . . . . . . 10
|
| 30 | simpr 110 |
. . . . . . . . . 10
| |
| 31 | rpexp 12590 |
. . . . . . . . . 10
| |
| 32 | 29, 29, 30, 31 | syl3anc 1250 |
. . . . . . . . 9
|
| 33 | 28, 32 | mtbird 675 |
. . . . . . . 8
|
| 34 | 33 | adantr 276 |
. . . . . . 7
|
| 35 | oveq1 5974 |
. . . . . . . . . 10
| |
| 36 | 35 | eqeq1d 2216 |
. . . . . . . . 9
|
| 37 | 36 | eqcoms 2210 |
. . . . . . . 8
|
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 34, 38 | mtbird 675 |
. . . . . 6
|
| 40 | 12, 39 | pm2.65da 663 |
. . . . 5
|
| 41 | 40 | neqcomd 2212 |
. . . 4
|
| 42 | 41 | neqned 2385 |
. . 3
|
| 43 | 4 | nnzd 9529 |
. . . . . 6
|
| 44 | 43 | adantr 276 |
. . . . 5
|
| 45 | 8 | nnnn0d 9383 |
. . . . . 6
|
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | zexpcl 10736 |
. . . . 5
| |
| 48 | 44, 46, 47 | syl2anc 411 |
. . . 4
|
| 49 | 30 | nnnn0d 9383 |
. . . . 5
|
| 50 | zexpcl 10736 |
. . . . 5
| |
| 51 | 29, 49, 50 | syl2anc 411 |
. . . 4
|
| 52 | zapne 9482 |
. . . 4
| |
| 53 | 48, 51, 52 | syl2anc 411 |
. . 3
|
| 54 | 42, 53 | mpbird 167 |
. 2
|
| 55 | 7 | nnrpd 9851 |
. . . . . 6
|
| 56 | 55 | adantr 276 |
. . . . 5
|
| 57 | logbgcd1irraplem.m |
. . . . . 6
| |
| 58 | 57 | adantr 276 |
. . . . 5
|
| 59 | 56, 58 | rpexpcld 10879 |
. . . 4
|
| 60 | 59 | rpred 9853 |
. . 3
|
| 61 | 4 | nnred 9084 |
. . . . 5
|
| 62 | 61, 45 | reexpcld 10872 |
. . . 4
|
| 63 | 62 | adantr 276 |
. . 3
|
| 64 | 1red 8122 |
. . . 4
| |
| 65 | 1rp 9814 |
. . . . . . 7
| |
| 66 | 65 | a1i 9 |
. . . . . 6
|
| 67 | 21 | adantr 276 |
. . . . . . . 8
|
| 68 | simpr 110 |
. . . . . . . 8
| |
| 69 | 7 | nnge1d 9114 |
. . . . . . . . 9
|
| 70 | 69 | adantr 276 |
. . . . . . . 8
|
| 71 | 67, 68, 70 | expge1d 10874 |
. . . . . . 7
|
| 72 | 67 | recnd 8136 |
. . . . . . . 8
|
| 73 | 7 | nnap0d 9117 |
. . . . . . . . 9
|
| 74 | 73 | adantr 276 |
. . . . . . . 8
|
| 75 | 72, 74, 58 | expnegapd 10862 |
. . . . . . 7
|
| 76 | 71, 75 | breqtrd 4085 |
. . . . . 6
|
| 77 | 66, 59, 76 | lerec2d 9875 |
. . . . 5
|
| 78 | 1div1e1 8812 |
. . . . 5
| |
| 79 | 77, 78 | breqtrdi 4100 |
. . . 4
|
| 80 | eluz2gt1 9758 |
. . . . . . 7
| |
| 81 | 2, 80 | syl 14 |
. . . . . 6
|
| 82 | expgt1 10759 |
. . . . . 6
| |
| 83 | 61, 8, 81, 82 | syl3anc 1250 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | 60, 64, 63, 79, 84 | lelttrd 8232 |
. . 3
|
| 86 | 60, 63, 85 | gtapd 8745 |
. 2
|
| 87 | elznn 9423 |
. . . 4
| |
| 88 | 57, 87 | sylib 122 |
. . 3
|
| 89 | 88 | simprd 114 |
. 2
|
| 90 | 54, 86, 89 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 df-prm 12545 |
| This theorem is referenced by: logbgcd1irraplemap 15556 |
| Copyright terms: Public domain | W3C validator |