ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp Unicode version

Theorem logbgcd1irraplemexp 15312
Description: Lemma for logbgcd1irrap 15314. Apartness of  X ^ N and  B ^ M. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.b  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.rp  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
logbgcd1irraplem.m  |-  ( ph  ->  M  e.  ZZ )
logbgcd1irraplem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
logbgcd1irraplemexp  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
2 logbgcd1irraplem.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
3 eluz2nn 9659 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
42, 3syl 14 . . . . . . . . 9  |-  ( ph  ->  X  e.  NN )
5 logbgcd1irraplem.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
6 eluz2nn 9659 . . . . . . . . . 10  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  B  e.  NN )
8 logbgcd1irraplem.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
9 rplpwr 12221 . . . . . . . . 9  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
104, 7, 8, 9syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( X  gcd  B )  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
111, 10mpd 13 . . . . . . 7  |-  ( ph  ->  ( ( X ^ N )  gcd  B
)  =  1 )
1211ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( X ^ N
)  gcd  B )  =  1 )
13 1red 8060 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  RR )
14 eluz2gt1 9695 . . . . . . . . . . . . . 14  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
155, 14syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <  B )
1613, 15gtned 8158 . . . . . . . . . . . 12  |-  ( ph  ->  B  =/=  1 )
1716neneqd 2388 . . . . . . . . . . 11  |-  ( ph  ->  -.  B  =  1 )
187nnzd 9466 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ZZ )
19 gcdid 12180 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
2018, 19syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  gcd  B
)  =  ( abs `  B ) )
217nnred 9022 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
227nnnn0d 9321 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
2322nn0ge0d 9324 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <_  B )
2421, 23absidd 11351 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  B
)  =  B )
2520, 24eqtrd 2229 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  gcd  B
)  =  B )
2625eqeq1d 2205 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  gcd  B )  =  1  <->  B  =  1 ) )
2717, 26mtbird 674 . . . . . . . . . 10  |-  ( ph  ->  -.  ( B  gcd  B )  =  1 )
2827adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B  gcd  B )  =  1 )
2918adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  B  e.  ZZ )
30 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  M  e.  NN )
31 rpexp 12348 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( ( B ^ M )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
3229, 29, 30, 31syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( ( B ^ M
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
3328, 32mtbird 674 . . . . . . . 8  |-  ( (
ph  /\  M  e.  NN )  ->  -.  (
( B ^ M
)  gcd  B )  =  1 )
3433adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( B ^ M )  gcd  B
)  =  1 )
35 oveq1 5932 . . . . . . . . . 10  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( X ^ N
)  gcd  B )  =  ( ( B ^ M )  gcd 
B ) )
3635eqeq1d 2205 . . . . . . . . 9  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3736eqcoms 2199 . . . . . . . 8  |-  ( ( B ^ M )  =  ( X ^ N )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3837adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3934, 38mtbird 674 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( X ^ N )  gcd  B
)  =  1 )
4012, 39pm2.65da 662 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B ^ M )  =  ( X ^ N
) )
4140neqcomd 2201 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( X ^ N )  =  ( B ^ M
) )
4241neqned 2374 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  =/=  ( B ^ M
) )
434nnzd 9466 . . . . . 6  |-  ( ph  ->  X  e.  ZZ )
4443adantr 276 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  X  e.  ZZ )
458nnnn0d 9321 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
4645adantr 276 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  N  e. 
NN0 )
47 zexpcl 10665 . . . . 5  |-  ( ( X  e.  ZZ  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  ZZ )
4844, 46, 47syl2anc 411 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  e.  ZZ )
4930nnnn0d 9321 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  M  e. 
NN0 )
50 zexpcl 10665 . . . . 5  |-  ( ( B  e.  ZZ  /\  M  e.  NN0 )  -> 
( B ^ M
)  e.  ZZ )
5129, 49, 50syl2anc 411 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( B ^ M )  e.  ZZ )
52 zapne 9419 . . . 4  |-  ( ( ( X ^ N
)  e.  ZZ  /\  ( B ^ M )  e.  ZZ )  -> 
( ( X ^ N ) #  ( B ^ M )  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5348, 51, 52syl2anc 411 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( X ^ N ) #  ( B ^ M
)  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5442, 53mpbird 167 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N ) #  ( B ^ M ) )
557nnrpd 9788 . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
5655adantr 276 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR+ )
57 logbgcd1irraplem.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
5857adantr 276 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  M  e.  ZZ )
5956, 58rpexpcld 10808 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR+ )
6059rpred 9790 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR )
614nnred 9022 . . . . 5  |-  ( ph  ->  X  e.  RR )
6261, 45reexpcld 10801 . . . 4  |-  ( ph  ->  ( X ^ N
)  e.  RR )
6362adantr 276 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N )  e.  RR )
64 1red 8060 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR )
65 1rp 9751 . . . . . . 7  |-  1  e.  RR+
6665a1i 9 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR+ )
6721adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR )
68 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  -u M  e.  NN0 )
697nnge1d 9052 . . . . . . . . 9  |-  ( ph  ->  1  <_  B )
7069adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  B )
7167, 68, 70expge1d 10803 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( B ^ -u M
) )
7267recnd 8074 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  CC )
737nnap0d 9055 . . . . . . . . 9  |-  ( ph  ->  B #  0 )
7473adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B #  0 )
7572, 74, 58expnegapd 10791 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ -u M )  =  ( 1  / 
( B ^ M
) ) )
7671, 75breqtrd 4060 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( 1  /  ( B ^ M ) ) )
7766, 59, 76lerec2d 9812 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
( 1  /  1
) )
78 1div1e1 8750 . . . . 5  |-  ( 1  /  1 )  =  1
7977, 78breqtrdi 4075 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
1 )
80 eluz2gt1 9695 . . . . . . 7  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
812, 80syl 14 . . . . . 6  |-  ( ph  ->  1  <  X )
82 expgt1 10688 . . . . . 6  |-  ( ( X  e.  RR  /\  N  e.  NN  /\  1  <  X )  ->  1  <  ( X ^ N
) )
8361, 8, 81, 82syl3anc 1249 . . . . 5  |-  ( ph  ->  1  <  ( X ^ N ) )
8483adantr 276 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <  ( X ^ N
) )
8560, 64, 63, 79, 84lelttrd 8170 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  < 
( X ^ N
) )
8660, 63, 85gtapd 8683 . 2  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N ) #  ( B ^ M ) )
87 elznn 9361 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8857, 87sylib 122 . . 3  |-  ( ph  ->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8988simprd 114 . 2  |-  ( ph  ->  ( M  e.  NN  \/  -u M  e.  NN0 ) )
9054, 86, 89mpjaodan 799 1  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7897   0cc0 7898   1c1 7899    < clt 8080    <_ cle 8081   -ucneg 8217   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   RR+crp 9747   ^cexp 10649   abscabs 11181    gcd cgcd 12147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303
This theorem is referenced by:  logbgcd1irraplemap  15313
  Copyright terms: Public domain W3C validator