ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp Unicode version

Theorem logbgcd1irraplemexp 13641
Description: Lemma for logbgcd1irrap 13643. Apartness of  X ^ N and  B ^ M. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.b  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.rp  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
logbgcd1irraplem.m  |-  ( ph  ->  M  e.  ZZ )
logbgcd1irraplem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
logbgcd1irraplemexp  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
2 logbgcd1irraplem.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
3 eluz2nn 9514 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
42, 3syl 14 . . . . . . . . 9  |-  ( ph  ->  X  e.  NN )
5 logbgcd1irraplem.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
6 eluz2nn 9514 . . . . . . . . . 10  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  B  e.  NN )
8 logbgcd1irraplem.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
9 rplpwr 11971 . . . . . . . . 9  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
104, 7, 8, 9syl3anc 1233 . . . . . . . 8  |-  ( ph  ->  ( ( X  gcd  B )  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
111, 10mpd 13 . . . . . . 7  |-  ( ph  ->  ( ( X ^ N )  gcd  B
)  =  1 )
1211ad2antrr 485 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( X ^ N
)  gcd  B )  =  1 )
13 1red 7924 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  RR )
14 eluz2gt1 9550 . . . . . . . . . . . . . 14  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
155, 14syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <  B )
1613, 15gtned 8021 . . . . . . . . . . . 12  |-  ( ph  ->  B  =/=  1 )
1716neneqd 2361 . . . . . . . . . . 11  |-  ( ph  ->  -.  B  =  1 )
187nnzd 9322 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ZZ )
19 gcdid 11930 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
2018, 19syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  gcd  B
)  =  ( abs `  B ) )
217nnred 8880 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
227nnnn0d 9177 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
2322nn0ge0d 9180 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <_  B )
2421, 23absidd 11120 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  B
)  =  B )
2520, 24eqtrd 2203 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  gcd  B
)  =  B )
2625eqeq1d 2179 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  gcd  B )  =  1  <->  B  =  1 ) )
2717, 26mtbird 668 . . . . . . . . . 10  |-  ( ph  ->  -.  ( B  gcd  B )  =  1 )
2827adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B  gcd  B )  =  1 )
2918adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  B  e.  ZZ )
30 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  M  e.  NN )
31 rpexp 12096 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( ( B ^ M )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
3229, 29, 30, 31syl3anc 1233 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( ( B ^ M
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
3328, 32mtbird 668 . . . . . . . 8  |-  ( (
ph  /\  M  e.  NN )  ->  -.  (
( B ^ M
)  gcd  B )  =  1 )
3433adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( B ^ M )  gcd  B
)  =  1 )
35 oveq1 5858 . . . . . . . . . 10  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( X ^ N
)  gcd  B )  =  ( ( B ^ M )  gcd 
B ) )
3635eqeq1d 2179 . . . . . . . . 9  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3736eqcoms 2173 . . . . . . . 8  |-  ( ( B ^ M )  =  ( X ^ N )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3837adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3934, 38mtbird 668 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( X ^ N )  gcd  B
)  =  1 )
4012, 39pm2.65da 656 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B ^ M )  =  ( X ^ N
) )
4140neqcomd 2175 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( X ^ N )  =  ( B ^ M
) )
4241neqned 2347 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  =/=  ( B ^ M
) )
434nnzd 9322 . . . . . 6  |-  ( ph  ->  X  e.  ZZ )
4443adantr 274 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  X  e.  ZZ )
458nnnn0d 9177 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
4645adantr 274 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  N  e. 
NN0 )
47 zexpcl 10480 . . . . 5  |-  ( ( X  e.  ZZ  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  ZZ )
4844, 46, 47syl2anc 409 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  e.  ZZ )
4930nnnn0d 9177 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  M  e. 
NN0 )
50 zexpcl 10480 . . . . 5  |-  ( ( B  e.  ZZ  /\  M  e.  NN0 )  -> 
( B ^ M
)  e.  ZZ )
5129, 49, 50syl2anc 409 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( B ^ M )  e.  ZZ )
52 zapne 9275 . . . 4  |-  ( ( ( X ^ N
)  e.  ZZ  /\  ( B ^ M )  e.  ZZ )  -> 
( ( X ^ N ) #  ( B ^ M )  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5348, 51, 52syl2anc 409 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( X ^ N ) #  ( B ^ M
)  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5442, 53mpbird 166 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N ) #  ( B ^ M ) )
557nnrpd 9640 . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
5655adantr 274 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR+ )
57 logbgcd1irraplem.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
5857adantr 274 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  M  e.  ZZ )
5956, 58rpexpcld 10622 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR+ )
6059rpred 9642 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR )
614nnred 8880 . . . . 5  |-  ( ph  ->  X  e.  RR )
6261, 45reexpcld 10615 . . . 4  |-  ( ph  ->  ( X ^ N
)  e.  RR )
6362adantr 274 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N )  e.  RR )
64 1red 7924 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR )
65 1rp 9603 . . . . . . 7  |-  1  e.  RR+
6665a1i 9 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR+ )
6721adantr 274 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR )
68 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  -u M  e.  NN0 )
697nnge1d 8910 . . . . . . . . 9  |-  ( ph  ->  1  <_  B )
7069adantr 274 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  B )
7167, 68, 70expge1d 10617 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( B ^ -u M
) )
7267recnd 7937 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  CC )
737nnap0d 8913 . . . . . . . . 9  |-  ( ph  ->  B #  0 )
7473adantr 274 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B #  0 )
7572, 74, 58expnegapd 10605 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ -u M )  =  ( 1  / 
( B ^ M
) ) )
7671, 75breqtrd 4013 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( 1  /  ( B ^ M ) ) )
7766, 59, 76lerec2d 9664 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
( 1  /  1
) )
78 1div1e1 8610 . . . . 5  |-  ( 1  /  1 )  =  1
7977, 78breqtrdi 4028 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
1 )
80 eluz2gt1 9550 . . . . . . 7  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
812, 80syl 14 . . . . . 6  |-  ( ph  ->  1  <  X )
82 expgt1 10503 . . . . . 6  |-  ( ( X  e.  RR  /\  N  e.  NN  /\  1  <  X )  ->  1  <  ( X ^ N
) )
8361, 8, 81, 82syl3anc 1233 . . . . 5  |-  ( ph  ->  1  <  ( X ^ N ) )
8483adantr 274 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <  ( X ^ N
) )
8560, 64, 63, 79, 84lelttrd 8033 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  < 
( X ^ N
) )
8660, 63, 85gtapd 8545 . 2  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N ) #  ( B ^ M ) )
87 elznn 9217 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8857, 87sylib 121 . . 3  |-  ( ph  ->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8988simprd 113 . 2  |-  ( ph  ->  ( M  e.  NN  \/  -u M  e.  NN0 ) )
9054, 86, 89mpjaodan 793 1  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3987   ` cfv 5196  (class class class)co 5851   RRcr 7762   0cc0 7763   1c1 7764    < clt 7943    <_ cle 7944   -ucneg 8080   # cap 8489    / cdiv 8578   NNcn 8867   2c2 8918   NN0cn0 9124   ZZcz 9201   ZZ>=cuz 9476   RR+crp 9599   ^cexp 10464   abscabs 10950    gcd cgcd 11886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6510  df-en 6716  df-sup 6958  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-fz 9955  df-fzo 10088  df-fl 10215  df-mod 10268  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-dvds 11739  df-gcd 11887  df-prm 12051
This theorem is referenced by:  logbgcd1irraplemap  13642
  Copyright terms: Public domain W3C validator