ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp Unicode version

Theorem logbgcd1irraplemexp 15555
Description: Lemma for logbgcd1irrap 15557. Apartness of  X ^ N and  B ^ M. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.b  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
logbgcd1irraplem.rp  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
logbgcd1irraplem.m  |-  ( ph  ->  M  e.  ZZ )
logbgcd1irraplem.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
logbgcd1irraplemexp  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8  |-  ( ph  ->  ( X  gcd  B
)  =  1 )
2 logbgcd1irraplem.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( ZZ>= ` 
2 ) )
3 eluz2nn 9722 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
42, 3syl 14 . . . . . . . . 9  |-  ( ph  ->  X  e.  NN )
5 logbgcd1irraplem.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
6 eluz2nn 9722 . . . . . . . . . 10  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  B  e.  NN )
8 logbgcd1irraplem.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
9 rplpwr 12463 . . . . . . . . 9  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
104, 7, 8, 9syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  ( ( X  gcd  B )  =  1  -> 
( ( X ^ N )  gcd  B
)  =  1 ) )
111, 10mpd 13 . . . . . . 7  |-  ( ph  ->  ( ( X ^ N )  gcd  B
)  =  1 )
1211ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( X ^ N
)  gcd  B )  =  1 )
13 1red 8122 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  RR )
14 eluz2gt1 9758 . . . . . . . . . . . . . 14  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
155, 14syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <  B )
1613, 15gtned 8220 . . . . . . . . . . . 12  |-  ( ph  ->  B  =/=  1 )
1716neneqd 2399 . . . . . . . . . . 11  |-  ( ph  ->  -.  B  =  1 )
187nnzd 9529 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ZZ )
19 gcdid 12422 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
2018, 19syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  gcd  B
)  =  ( abs `  B ) )
217nnred 9084 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
227nnnn0d 9383 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
2322nn0ge0d 9386 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <_  B )
2421, 23absidd 11593 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  B
)  =  B )
2520, 24eqtrd 2240 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  gcd  B
)  =  B )
2625eqeq1d 2216 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  gcd  B )  =  1  <->  B  =  1 ) )
2717, 26mtbird 675 . . . . . . . . . 10  |-  ( ph  ->  -.  ( B  gcd  B )  =  1 )
2827adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B  gcd  B )  =  1 )
2918adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  B  e.  ZZ )
30 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  NN )  ->  M  e.  NN )
31 rpexp 12590 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( ( B ^ M )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
3229, 29, 30, 31syl3anc 1250 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( ( B ^ M
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
3328, 32mtbird 675 . . . . . . . 8  |-  ( (
ph  /\  M  e.  NN )  ->  -.  (
( B ^ M
)  gcd  B )  =  1 )
3433adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( B ^ M )  gcd  B
)  =  1 )
35 oveq1 5974 . . . . . . . . . 10  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( X ^ N
)  gcd  B )  =  ( ( B ^ M )  gcd 
B ) )
3635eqeq1d 2216 . . . . . . . . 9  |-  ( ( X ^ N )  =  ( B ^ M )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3736eqcoms 2210 . . . . . . . 8  |-  ( ( B ^ M )  =  ( X ^ N )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3837adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  (
( ( X ^ N )  gcd  B
)  =  1  <->  (
( B ^ M
)  gcd  B )  =  1 ) )
3934, 38mtbird 675 . . . . . 6  |-  ( ( ( ph  /\  M  e.  NN )  /\  ( B ^ M )  =  ( X ^ N
) )  ->  -.  ( ( X ^ N )  gcd  B
)  =  1 )
4012, 39pm2.65da 663 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( B ^ M )  =  ( X ^ N
) )
4140neqcomd 2212 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  -.  ( X ^ N )  =  ( B ^ M
) )
4241neqned 2385 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  =/=  ( B ^ M
) )
434nnzd 9529 . . . . . 6  |-  ( ph  ->  X  e.  ZZ )
4443adantr 276 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  X  e.  ZZ )
458nnnn0d 9383 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
4645adantr 276 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  N  e. 
NN0 )
47 zexpcl 10736 . . . . 5  |-  ( ( X  e.  ZZ  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  ZZ )
4844, 46, 47syl2anc 411 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N )  e.  ZZ )
4930nnnn0d 9383 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  M  e. 
NN0 )
50 zexpcl 10736 . . . . 5  |-  ( ( B  e.  ZZ  /\  M  e.  NN0 )  -> 
( B ^ M
)  e.  ZZ )
5129, 49, 50syl2anc 411 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( B ^ M )  e.  ZZ )
52 zapne 9482 . . . 4  |-  ( ( ( X ^ N
)  e.  ZZ  /\  ( B ^ M )  e.  ZZ )  -> 
( ( X ^ N ) #  ( B ^ M )  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5348, 51, 52syl2anc 411 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( X ^ N ) #  ( B ^ M
)  <->  ( X ^ N )  =/=  ( B ^ M ) ) )
5442, 53mpbird 167 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( X ^ N ) #  ( B ^ M ) )
557nnrpd 9851 . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
5655adantr 276 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR+ )
57 logbgcd1irraplem.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
5857adantr 276 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  M  e.  ZZ )
5956, 58rpexpcld 10879 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR+ )
6059rpred 9853 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  e.  RR )
614nnred 9084 . . . . 5  |-  ( ph  ->  X  e.  RR )
6261, 45reexpcld 10872 . . . 4  |-  ( ph  ->  ( X ^ N
)  e.  RR )
6362adantr 276 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N )  e.  RR )
64 1red 8122 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR )
65 1rp 9814 . . . . . . 7  |-  1  e.  RR+
6665a1i 9 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  e.  RR+ )
6721adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  RR )
68 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  -u M  e.  NN0 )
697nnge1d 9114 . . . . . . . . 9  |-  ( ph  ->  1  <_  B )
7069adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  B )
7167, 68, 70expge1d 10874 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( B ^ -u M
) )
7267recnd 8136 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B  e.  CC )
737nnap0d 9117 . . . . . . . . 9  |-  ( ph  ->  B #  0 )
7473adantr 276 . . . . . . . 8  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  B #  0 )
7572, 74, 58expnegapd 10862 . . . . . . 7  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ -u M )  =  ( 1  / 
( B ^ M
) ) )
7671, 75breqtrd 4085 . . . . . 6  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <_  ( 1  /  ( B ^ M ) ) )
7766, 59, 76lerec2d 9875 . . . . 5  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
( 1  /  1
) )
78 1div1e1 8812 . . . . 5  |-  ( 1  /  1 )  =  1
7977, 78breqtrdi 4100 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  <_ 
1 )
80 eluz2gt1 9758 . . . . . . 7  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
812, 80syl 14 . . . . . 6  |-  ( ph  ->  1  <  X )
82 expgt1 10759 . . . . . 6  |-  ( ( X  e.  RR  /\  N  e.  NN  /\  1  <  X )  ->  1  <  ( X ^ N
) )
8361, 8, 81, 82syl3anc 1250 . . . . 5  |-  ( ph  ->  1  <  ( X ^ N ) )
8483adantr 276 . . . 4  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  1  <  ( X ^ N
) )
8560, 64, 63, 79, 84lelttrd 8232 . . 3  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( B ^ M )  < 
( X ^ N
) )
8660, 63, 85gtapd 8745 . 2  |-  ( (
ph  /\  -u M  e. 
NN0 )  ->  ( X ^ N ) #  ( B ^ M ) )
87 elznn 9423 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8857, 87sylib 122 . . 3  |-  ( ph  ->  ( M  e.  RR  /\  ( M  e.  NN  \/  -u M  e.  NN0 ) ) )
8988simprd 114 . 2  |-  ( ph  ->  ( M  e.  NN  \/  -u M  e.  NN0 ) )
9054, 86, 89mpjaodan 800 1  |-  ( ph  ->  ( X ^ N
) #  ( B ^ M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   0cc0 7960   1c1 7961    < clt 8142    <_ cle 8143   -ucneg 8279   # cap 8689    / cdiv 8780   NNcn 9071   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810   ^cexp 10720   abscabs 11423    gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545
This theorem is referenced by:  logbgcd1irraplemap  15556
  Copyright terms: Public domain W3C validator