ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib Unicode version

Theorem sylnib 676
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1  |-  ( ph  ->  -.  ps )
sylnib.2  |-  ( ps  <->  ch )
Assertion
Ref Expression
sylnib  |-  ( ph  ->  -.  ch )

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2  |-  ( ph  ->  -.  ps )
2 sylnib.2 . . 3  |-  ( ps  <->  ch )
32a1i 9 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
41, 3mtbid 672 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnibr  677  neqcomd  2182  inssdif0im  3492  undifexmid  4195  ordtriexmidlem2  4521  dmsn0el  5100  fidifsnen  6872  ctssdccl  7112  nninfwlpoimlemginf  7176  onntri35  7238  onntri45  7242  2omotaplemap  7258  exmidapne  7261  ltpopr  7596  caucvgprprlemnbj  7694  xrlttri3  9799  fzneuz  10103  iseqf1olemqcl  10488  iseqf1olemnab  10490  iseqf1olemab  10491  exp3val  10524  pwle2  14833
  Copyright terms: Public domain W3C validator