![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnib | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylnib.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylnib |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylnib.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbid 673 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnibr 678 neqcomd 2198 inssdif0im 3515 undifexmid 4223 ordtriexmidlem2 4553 dmsn0el 5136 fidifsnen 6928 ctssdccl 7172 nninfwlpoimlemginf 7237 onntri35 7299 onntri45 7303 2omotaplemap 7319 exmidapne 7322 ltpopr 7657 caucvgprprlemnbj 7755 xrlttri3 9866 fzneuz 10170 iseqf1olemqcl 10573 iseqf1olemnab 10575 iseqf1olemab 10576 exp3val 10615 pwle2 15559 |
Copyright terms: Public domain | W3C validator |