| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 |
|
| sylnib.2 |
|
| Ref | Expression |
|---|---|
| sylnib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 |
. 2
| |
| 2 | sylnib.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | mtbid 674 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 679 neqcomd 2210 inssdif0im 3528 undifexmid 4237 ordtriexmidlem2 4568 dmsn0el 5152 fidifsnen 6967 ctssdccl 7213 nninfwlpoimlemginf 7278 onntri35 7349 onntri45 7353 2omotaplemap 7369 exmidapne 7372 ltpopr 7708 caucvgprprlemnbj 7806 xrlttri3 9919 fzneuz 10223 iseqf1olemqcl 10644 iseqf1olemnab 10646 iseqf1olemab 10647 exp3val 10686 pwle2 15935 |
| Copyright terms: Public domain | W3C validator |