| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 |
|
| sylnib.2 |
|
| Ref | Expression |
|---|---|
| sylnib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 |
. 2
| |
| 2 | sylnib.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | mtbid 676 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 681 neqcomd 2234 inssdif0im 3559 undifexmid 4276 ordtriexmidlem2 4611 dmsn0el 5197 fidifsnen 7028 ctssdccl 7274 nninfwlpoimlemginf 7339 onntri35 7418 onntri45 7422 2omotaplemap 7439 exmidapne 7442 ltpopr 7778 caucvgprprlemnbj 7876 xrlttri3 9989 fzneuz 10293 iseqf1olemqcl 10716 iseqf1olemnab 10718 iseqf1olemab 10719 exp3val 10758 pwle2 16323 |
| Copyright terms: Public domain | W3C validator |