| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 |
|
| sylnib.2 |
|
| Ref | Expression |
|---|---|
| sylnib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 |
. 2
| |
| 2 | sylnib.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | mtbid 674 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 679 neqcomd 2212 inssdif0im 3536 undifexmid 4253 ordtriexmidlem2 4586 dmsn0el 5171 fidifsnen 6993 ctssdccl 7239 nninfwlpoimlemginf 7304 onntri35 7383 onntri45 7387 2omotaplemap 7404 exmidapne 7407 ltpopr 7743 caucvgprprlemnbj 7841 xrlttri3 9954 fzneuz 10258 iseqf1olemqcl 10681 iseqf1olemnab 10683 iseqf1olemab 10684 exp3val 10723 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |