ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib Unicode version

Theorem sylnib 666
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1  |-  ( ph  ->  -.  ps )
sylnib.2  |-  ( ps  <->  ch )
Assertion
Ref Expression
sylnib  |-  ( ph  ->  -.  ch )

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2  |-  ( ph  ->  -.  ps )
2 sylnib.2 . . 3  |-  ( ps  <->  ch )
32a1i 9 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
41, 3mtbid 662 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnibr  667  neqcomd  2170  inssdif0im  3476  undifexmid  4172  ordtriexmidlem2  4497  dmsn0el  5073  fidifsnen  6836  ctssdccl  7076  onntri35  7193  onntri45  7197  ltpopr  7536  caucvgprprlemnbj  7634  xrlttri3  9733  fzneuz  10036  iseqf1olemqcl  10421  iseqf1olemnab  10423  iseqf1olemab  10424  exp3val  10457  pwle2  13878
  Copyright terms: Public domain W3C validator