| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 |
|
| sylnib.2 |
|
| Ref | Expression |
|---|---|
| sylnib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 |
. 2
| |
| 2 | sylnib.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | mtbid 673 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 678 neqcomd 2201 inssdif0im 3519 undifexmid 4227 ordtriexmidlem2 4557 dmsn0el 5140 fidifsnen 6940 ctssdccl 7186 nninfwlpoimlemginf 7251 onntri35 7320 onntri45 7324 2omotaplemap 7340 exmidapne 7343 ltpopr 7679 caucvgprprlemnbj 7777 xrlttri3 9889 fzneuz 10193 iseqf1olemqcl 10608 iseqf1olemnab 10610 iseqf1olemab 10611 exp3val 10650 pwle2 15729 |
| Copyright terms: Public domain | W3C validator |