ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnib Unicode version

Theorem sylnib 677
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnib.1  |-  ( ph  ->  -.  ps )
sylnib.2  |-  ( ps  <->  ch )
Assertion
Ref Expression
sylnib  |-  ( ph  ->  -.  ch )

Proof of Theorem sylnib
StepHypRef Expression
1 sylnib.1 . 2  |-  ( ph  ->  -.  ps )
2 sylnib.2 . . 3  |-  ( ps  <->  ch )
32a1i 9 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
41, 3mtbid 673 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnibr  678  neqcomd  2209  inssdif0im  3527  undifexmid  4236  ordtriexmidlem2  4567  dmsn0el  5151  fidifsnen  6966  ctssdccl  7212  nninfwlpoimlemginf  7277  onntri35  7348  onntri45  7352  2omotaplemap  7368  exmidapne  7371  ltpopr  7707  caucvgprprlemnbj  7805  xrlttri3  9918  fzneuz  10222  iseqf1olemqcl  10642  iseqf1olemnab  10644  iseqf1olemab  10645  exp3val  10684  pwle2  15897
  Copyright terms: Public domain W3C validator