| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnib | Unicode version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 |
|
| sylnib.2 |
|
| Ref | Expression |
|---|---|
| sylnib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 |
. 2
| |
| 2 | sylnib.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | mtbid 673 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnibr 678 neqcomd 2209 inssdif0im 3527 undifexmid 4236 ordtriexmidlem2 4567 dmsn0el 5151 fidifsnen 6966 ctssdccl 7212 nninfwlpoimlemginf 7277 onntri35 7348 onntri45 7352 2omotaplemap 7368 exmidapne 7371 ltpopr 7707 caucvgprprlemnbj 7805 xrlttri3 9918 fzneuz 10222 iseqf1olemqcl 10642 iseqf1olemnab 10644 iseqf1olemab 10645 exp3val 10684 pwle2 15897 |
| Copyright terms: Public domain | W3C validator |