Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfth | Unicode version |
Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
hbth.1 |
Ref | Expression |
---|---|
nfth |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbth.1 | . . 3 | |
2 | 1 | hbth 1440 | . 2 |
3 | 2 | nfi 1439 | 1 |
Colors of variables: wff set class |
Syntax hints: wnf 1437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1426 |
This theorem depends on definitions: df-bi 116 df-nf 1438 |
This theorem is referenced by: nftru 1443 nfequid 1679 sbt 1761 sbc2ie 3004 omsinds 4575 |
Copyright terms: Public domain | W3C validator |