ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfi Unicode version

Theorem nfi 1455
Description: Deduce that  x is not free in  ph from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfi.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
nfi  |-  F/ x ph

Proof of Theorem nfi
StepHypRef Expression
1 df-nf 1454 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 nfi.1 . 2  |-  ( ph  ->  A. x ph )
31, 2mpgbir 1446 1  |-  F/ x ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfth  1457  nfnth  1458  nfe1  1489  nfdh  1517  nfv  1521  nfa1  1534  nfan1  1557  nfim1  1564  nfor  1567  nfex  1630  nfae  1712  cbv3h  1736  nfs1  1802  nfs1v  1932  hbsb  1942  sbco2h  1957  hbsbd  1975  dvelimALT  2003  dvelimfv  2004  hbeu  2040  hbeud  2041  eu3h  2064  mo3h  2072  nfsab1  2160  nfsab  2162  nfcii  2303  nfcri  2306
  Copyright terms: Public domain W3C validator