| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfi | Unicode version | ||
| Description: Deduce that |
| Ref | Expression |
|---|---|
| nfi.1 |
|
| Ref | Expression |
|---|---|
| nfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1507 |
. 2
| |
| 2 | nfi.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1499 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nfth 1510 nfnth 1511 nfe1 1542 nfdh 1570 nfv 1574 nfa1 1587 nfan1 1610 nfim1 1617 nfor 1620 nfex 1683 nfae 1765 cbv3h 1789 nfs1 1855 nfs1v 1990 hbsb 2000 sbco2h 2015 hbsbd 2033 dvelimALT 2061 dvelimfv 2062 hbeu 2098 hbeud 2099 eu3h 2123 mo3h 2131 nfsab1 2219 nfsab 2221 nfcii 2363 nfcri 2366 |
| Copyright terms: Public domain | W3C validator |