![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfi | Unicode version |
Description: Deduce that ![]() ![]() |
Ref | Expression |
---|---|
nfi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1472 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1464 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: nfth 1475 nfnth 1476 nfe1 1507 nfdh 1535 nfv 1539 nfa1 1552 nfan1 1575 nfim1 1582 nfor 1585 nfex 1648 nfae 1730 cbv3h 1754 nfs1 1820 nfs1v 1955 hbsb 1965 sbco2h 1980 hbsbd 1998 dvelimALT 2026 dvelimfv 2027 hbeu 2063 hbeud 2064 eu3h 2087 mo3h 2095 nfsab1 2183 nfsab 2185 nfcii 2327 nfcri 2330 |
Copyright terms: Public domain | W3C validator |