ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfi Unicode version

Theorem nfi 1508
Description: Deduce that  x is not free in  ph from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfi.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
nfi  |-  F/ x ph

Proof of Theorem nfi
StepHypRef Expression
1 df-nf 1507 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 nfi.1 . 2  |-  ( ph  ->  A. x ph )
31, 2mpgbir 1499 1  |-  F/ x ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393   F/wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  nfth  1510  nfnth  1511  nfe1  1542  nfdh  1570  nfv  1574  nfa1  1587  nfan1  1610  nfim1  1617  nfor  1620  nfex  1683  nfae  1765  cbv3h  1789  nfs1  1855  nfs1v  1990  hbsb  2000  sbco2h  2015  hbsbd  2033  dvelimALT  2061  dvelimfv  2062  hbeu  2098  hbeud  2099  eu3h  2123  mo3h  2131  nfsab1  2219  nfsab  2221  nfcii  2363  nfcri  2366
  Copyright terms: Public domain W3C validator