Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfi | Unicode version |
Description: Deduce that is not free in from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfi.1 |
Ref | Expression |
---|---|
nfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1438 | . 2 | |
2 | nfi.1 | . 2 | |
3 | 1, 2 | mpgbir 1430 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1330 wnf 1437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1426 |
This theorem depends on definitions: df-bi 116 df-nf 1438 |
This theorem is referenced by: nfth 1441 nfnth 1442 nfe1 1473 nfdh 1501 nfv 1505 nfa1 1518 nfan1 1541 nfim1 1548 nfor 1551 nfex 1614 nfae 1696 cbv3h 1720 nfs1 1786 nfs1v 1916 hbsb 1926 sbco2h 1941 hbsbd 1959 dvelimALT 1987 dvelimfv 1988 hbeu 2024 hbeud 2025 eu3h 2048 mo3h 2056 nfsab1 2144 nfsab 2146 nfcii 2287 nfcri 2290 |
Copyright terms: Public domain | W3C validator |