| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfi | Unicode version | ||
| Description: Deduce that  | 
| Ref | Expression | 
|---|---|
| nfi.1 | 
 | 
| Ref | Expression | 
|---|---|
| nfi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nf 1475 | 
. 2
 | |
| 2 | nfi.1 | 
. 2
 | |
| 3 | 1, 2 | mpgbir 1467 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: nfth 1478 nfnth 1479 nfe1 1510 nfdh 1538 nfv 1542 nfa1 1555 nfan1 1578 nfim1 1585 nfor 1588 nfex 1651 nfae 1733 cbv3h 1757 nfs1 1823 nfs1v 1958 hbsb 1968 sbco2h 1983 hbsbd 2001 dvelimALT 2029 dvelimfv 2030 hbeu 2066 hbeud 2067 eu3h 2090 mo3h 2098 nfsab1 2186 nfsab 2188 nfcii 2330 nfcri 2333 | 
| Copyright terms: Public domain | W3C validator |