Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omsinds | Unicode version |
Description: Strong (or "total") induction principle over . (Contributed by Scott Fenton, 17-Jul-2015.) |
Ref | Expression |
---|---|
omsinds.1 | |
omsinds.2 | |
omsinds.3 |
Ref | Expression |
---|---|
omsinds |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsinds.2 | . 2 | |
2 | suceq 4380 | . . . 4 | |
3 | 2 | raleqdv 2667 | . . 3 |
4 | suceq 4380 | . . . 4 | |
5 | 4 | raleqdv 2667 | . . 3 |
6 | suceq 4380 | . . . 4 | |
7 | 6 | raleqdv 2667 | . . 3 |
8 | suceq 4380 | . . . 4 | |
9 | 8 | raleqdv 2667 | . . 3 |
10 | ral0 3510 | . . . . . 6 | |
11 | omsinds.3 | . . . . . . . 8 | |
12 | 11 | rgen 2519 | . . . . . . 7 |
13 | peano1 4571 | . . . . . . . 8 | |
14 | 10 | nfth 1452 | . . . . . . . . . 10 |
15 | nfsbc1v 2969 | . . . . . . . . . 10 | |
16 | 14, 15 | nfim 1560 | . . . . . . . . 9 |
17 | raleq 2661 | . . . . . . . . . 10 | |
18 | sbceq1a 2960 | . . . . . . . . . 10 | |
19 | 17, 18 | imbi12d 233 | . . . . . . . . 9 |
20 | 16, 19 | rspc 2824 | . . . . . . . 8 |
21 | 13, 20 | ax-mp 5 | . . . . . . 7 |
22 | 12, 21 | ax-mp 5 | . . . . . 6 |
23 | 10, 22 | ax-mp 5 | . . . . 5 |
24 | ralsns 3614 | . . . . . 6 | |
25 | 13, 24 | ax-mp 5 | . . . . 5 |
26 | 23, 25 | mpbir 145 | . . . 4 |
27 | suc0 4389 | . . . . 5 | |
28 | 27 | raleqi 2665 | . . . 4 |
29 | 26, 28 | mpbir 145 | . . 3 |
30 | simpr 109 | . . . . . 6 | |
31 | peano2 4572 | . . . . . . . . 9 | |
32 | 31 | adantr 274 | . . . . . . . 8 |
33 | omsinds.1 | . . . . . . . . . 10 | |
34 | 33 | cbvralv 2692 | . . . . . . . . 9 |
35 | 30, 34 | sylib 121 | . . . . . . . 8 |
36 | nfv 1516 | . . . . . . . . . . 11 | |
37 | nfsbc1v 2969 | . . . . . . . . . . 11 | |
38 | 36, 37 | nfim 1560 | . . . . . . . . . 10 |
39 | raleq 2661 | . . . . . . . . . . 11 | |
40 | sbceq1a 2960 | . . . . . . . . . . 11 | |
41 | 39, 40 | imbi12d 233 | . . . . . . . . . 10 |
42 | 38, 41 | rspc 2824 | . . . . . . . . 9 |
43 | 12, 42 | mpi 15 | . . . . . . . 8 |
44 | 32, 35, 43 | sylc 62 | . . . . . . 7 |
45 | ralsns 3614 | . . . . . . . 8 | |
46 | 32, 45 | syl 14 | . . . . . . 7 |
47 | 44, 46 | mpbird 166 | . . . . . 6 |
48 | ralun 3304 | . . . . . 6 | |
49 | 30, 47, 48 | syl2anc 409 | . . . . 5 |
50 | df-suc 4349 | . . . . . . 7 | |
51 | 50 | a1i 9 | . . . . . 6 |
52 | 51 | raleqdv 2667 | . . . . 5 |
53 | 49, 52 | mpbird 166 | . . . 4 |
54 | 53 | ex 114 | . . 3 |
55 | 3, 5, 7, 9, 29, 54 | finds 4577 | . 2 |
56 | sucidg 4394 | . 2 | |
57 | 1, 55, 56 | rspcdva 2835 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wsbc 2951 cun 3114 c0 3409 csn 3576 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nninfalllem1 13888 nninfsellemqall 13895 |
Copyright terms: Public domain | W3C validator |