| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omsinds | Unicode version | ||
| Description: Strong (or
"total") induction principle over |
| Ref | Expression |
|---|---|
| omsinds.1 |
|
| omsinds.2 |
|
| omsinds.3 |
|
| Ref | Expression |
|---|---|
| omsinds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsinds.2 |
. 2
| |
| 2 | suceq 4493 |
. . . 4
| |
| 3 | 2 | raleqdv 2734 |
. . 3
|
| 4 | suceq 4493 |
. . . 4
| |
| 5 | 4 | raleqdv 2734 |
. . 3
|
| 6 | suceq 4493 |
. . . 4
| |
| 7 | 6 | raleqdv 2734 |
. . 3
|
| 8 | suceq 4493 |
. . . 4
| |
| 9 | 8 | raleqdv 2734 |
. . 3
|
| 10 | ral0 3593 |
. . . . . 6
| |
| 11 | omsinds.3 |
. . . . . . . 8
| |
| 12 | 11 | rgen 2583 |
. . . . . . 7
|
| 13 | peano1 4686 |
. . . . . . . 8
| |
| 14 | 10 | nfth 1510 |
. . . . . . . . . 10
|
| 15 | nfsbc1v 3047 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | nfim 1618 |
. . . . . . . . 9
|
| 17 | raleq 2728 |
. . . . . . . . . 10
| |
| 18 | sbceq1a 3038 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | imbi12d 234 |
. . . . . . . . 9
|
| 20 | 16, 19 | rspc 2901 |
. . . . . . . 8
|
| 21 | 13, 20 | ax-mp 5 |
. . . . . . 7
|
| 22 | 12, 21 | ax-mp 5 |
. . . . . 6
|
| 23 | 10, 22 | ax-mp 5 |
. . . . 5
|
| 24 | ralsns 3704 |
. . . . . 6
| |
| 25 | 13, 24 | ax-mp 5 |
. . . . 5
|
| 26 | 23, 25 | mpbir 146 |
. . . 4
|
| 27 | suc0 4502 |
. . . . 5
| |
| 28 | 27 | raleqi 2732 |
. . . 4
|
| 29 | 26, 28 | mpbir 146 |
. . 3
|
| 30 | simpr 110 |
. . . . . 6
| |
| 31 | peano2 4687 |
. . . . . . . . 9
| |
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | omsinds.1 |
. . . . . . . . . 10
| |
| 34 | 33 | cbvralv 2765 |
. . . . . . . . 9
|
| 35 | 30, 34 | sylib 122 |
. . . . . . . 8
|
| 36 | nfv 1574 |
. . . . . . . . . . 11
| |
| 37 | nfsbc1v 3047 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | nfim 1618 |
. . . . . . . . . 10
|
| 39 | raleq 2728 |
. . . . . . . . . . 11
| |
| 40 | sbceq1a 3038 |
. . . . . . . . . . 11
| |
| 41 | 39, 40 | imbi12d 234 |
. . . . . . . . . 10
|
| 42 | 38, 41 | rspc 2901 |
. . . . . . . . 9
|
| 43 | 12, 42 | mpi 15 |
. . . . . . . 8
|
| 44 | 32, 35, 43 | sylc 62 |
. . . . . . 7
|
| 45 | ralsns 3704 |
. . . . . . . 8
| |
| 46 | 32, 45 | syl 14 |
. . . . . . 7
|
| 47 | 44, 46 | mpbird 167 |
. . . . . 6
|
| 48 | ralun 3386 |
. . . . . 6
| |
| 49 | 30, 47, 48 | syl2anc 411 |
. . . . 5
|
| 50 | df-suc 4462 |
. . . . . . 7
| |
| 51 | 50 | a1i 9 |
. . . . . 6
|
| 52 | 51 | raleqdv 2734 |
. . . . 5
|
| 53 | 49, 52 | mpbird 167 |
. . . 4
|
| 54 | 53 | ex 115 |
. . 3
|
| 55 | 3, 5, 7, 9, 29, 54 | finds 4692 |
. 2
|
| 56 | sucidg 4507 |
. 2
| |
| 57 | 1, 55, 56 | rspcdva 2912 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: nninfalllem1 16374 nninfsellemqall 16381 |
| Copyright terms: Public domain | W3C validator |