ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbt Unicode version

Theorem sbt 1777
Description: A substitution into a theorem remains true. (See chvar 1750 and chvarv 1930 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sbt.1  |-  ph
Assertion
Ref Expression
sbt  |-  [ y  /  x ] ph

Proof of Theorem sbt
StepHypRef Expression
1 sbt.1 . 2  |-  ph
21nfth 1457 . . 3  |-  F/ x ph
32sbf 1770 . 2  |-  ( [ y  /  x ] ph 
<-> 
ph )
41, 3mpbir 145 1  |-  [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  vjust  2731
  Copyright terms: Public domain W3C validator