ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.41 Unicode version

Theorem pm2.41 766
Description: Theorem *2.41 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.41  |-  ( ( ps  \/  ( ph  \/  ps ) )  -> 
( ph  \/  ps ) )

Proof of Theorem pm2.41
StepHypRef Expression
1 olc 701 . 2  |-  ( ps 
->  ( ph  \/  ps ) )
2 id 19 . 2  |-  ( (
ph  \/  ps )  ->  ( ph  \/  ps ) )
31, 2jaoi 706 1  |-  ( ( ps  \/  ( ph  \/  ps ) )  -> 
( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator