Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > olc | Unicode version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | jaob 700 | . . 3 | |
3 | 1, 2 | mpbi 144 | . 2 |
4 | 3 | simpri 112 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: oibabs 704 pm1.4 717 olci 722 pm2.07 727 pm2.46 729 biorf 734 pm1.5 755 pm2.41 766 pm4.78i 772 pm3.48 775 ordi 806 andi 808 pm4.72 817 stdcn 837 pm2.54dc 881 pm2.85dc 895 dcor 925 dedlemb 960 xoranor 1367 19.33 1472 hbor 1534 nford 1555 19.30dc 1615 19.43 1616 19.32r 1668 euor2 2072 mooran2 2087 r19.32r 2612 undif3ss 3383 undif4 3471 issod 4297 onsucelsucexmid 4507 sucprcreg 4526 0elnn 4596 acexmidlemph 5835 nntri3or 6461 swoord1 6530 swoord2 6531 exmidaclem 7164 exmidontri2or 7199 addlocprlem 7476 nqprloc 7486 apreap 8485 zletric 9235 zlelttric 9236 zmulcl 9244 zdceq 9266 zdcle 9267 zdclt 9268 nn0lt2 9272 elnn1uz2 9545 mnflt 9719 mnfltpnf 9721 xrltso 9732 fzdcel 9975 fzm1 10035 qletric 10179 qlelttric 10180 qdceq 10182 qsqeqor 10565 nn0o1gt2 11842 prm23lt5 12195 bj-fadc 13635 decidin 13678 triap 13908 tridceq 13935 |
Copyright terms: Public domain | W3C validator |