![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > olc | Unicode version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jaob 710 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simpri 113 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: oibabs 714 pm1.4 727 olci 732 pm2.07 737 pm2.46 739 biorf 744 pm1.5 765 pm2.41 776 pm4.78i 782 pm3.48 785 ordi 816 andi 818 pm4.72 827 stdcn 847 pm2.54dc 891 pm2.85dc 905 dcor 935 dedlemb 970 xoranor 1377 19.33 1484 hbor 1546 nford 1567 19.30dc 1627 19.43 1628 19.32r 1680 euor2 2084 mooran2 2099 r19.32r 2623 undif3ss 3397 undif4 3486 issod 4320 onsucelsucexmid 4530 sucprcreg 4549 0elnn 4619 acexmidlemph 5868 nntri3or 6494 swoord1 6564 swoord2 6565 exmidaclem 7207 exmidontri2or 7242 addlocprlem 7534 nqprloc 7544 apreap 8544 zletric 9297 zlelttric 9298 zmulcl 9306 zdceq 9328 zdcle 9329 zdclt 9330 nn0lt2 9334 elnn1uz2 9607 mnflt 9783 mnfltpnf 9785 xrltso 9796 fzdcel 10040 fzm1 10100 qletric 10244 qlelttric 10245 qdceq 10247 qsqeqor 10631 nn0o1gt2 11910 prm23lt5 12263 bj-fadc 14509 decidin 14552 triap 14780 tridceq 14807 |
Copyright terms: Public domain | W3C validator |