![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > olc | Unicode version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jaob 710 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simpri 113 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: oibabs 714 pm1.4 727 olci 732 pm2.07 737 pm2.46 739 biorf 744 pm1.5 765 pm2.41 776 pm4.78i 782 pm3.48 785 ordi 816 andi 818 pm4.72 827 stdcn 847 pm2.54dc 891 pm2.85dc 905 dcor 935 dedlemb 970 xoranor 1377 19.33 1484 hbor 1546 nford 1567 19.30dc 1627 19.43 1628 19.32r 1680 euor2 2084 mooran2 2099 r19.32r 2623 undif3ss 3396 undif4 3485 issod 4319 onsucelsucexmid 4529 sucprcreg 4548 0elnn 4618 acexmidlemph 5867 nntri3or 6493 swoord1 6563 swoord2 6564 exmidaclem 7206 exmidontri2or 7241 addlocprlem 7533 nqprloc 7543 apreap 8543 zletric 9296 zlelttric 9297 zmulcl 9305 zdceq 9327 zdcle 9328 zdclt 9329 nn0lt2 9333 elnn1uz2 9606 mnflt 9782 mnfltpnf 9784 xrltso 9795 fzdcel 10039 fzm1 10099 qletric 10243 qlelttric 10244 qdceq 10246 qsqeqor 10630 nn0o1gt2 11909 prm23lt5 12262 bj-fadc 14476 decidin 14519 triap 14747 tridceq 14774 |
Copyright terms: Public domain | W3C validator |