Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > olc | Unicode version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | jaob 705 | . . 3 | |
3 | 1, 2 | mpbi 144 | . 2 |
4 | 3 | simpri 112 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: oibabs 709 pm1.4 722 olci 727 pm2.07 732 pm2.46 734 biorf 739 pm1.5 760 pm2.41 771 pm4.78i 777 pm3.48 780 ordi 811 andi 813 pm4.72 822 stdcn 842 pm2.54dc 886 pm2.85dc 900 dcor 930 dedlemb 965 xoranor 1372 19.33 1477 hbor 1539 nford 1560 19.30dc 1620 19.43 1621 19.32r 1673 euor2 2077 mooran2 2092 r19.32r 2616 undif3ss 3388 undif4 3477 issod 4304 onsucelsucexmid 4514 sucprcreg 4533 0elnn 4603 acexmidlemph 5846 nntri3or 6472 swoord1 6542 swoord2 6543 exmidaclem 7185 exmidontri2or 7220 addlocprlem 7497 nqprloc 7507 apreap 8506 zletric 9256 zlelttric 9257 zmulcl 9265 zdceq 9287 zdcle 9288 zdclt 9289 nn0lt2 9293 elnn1uz2 9566 mnflt 9740 mnfltpnf 9742 xrltso 9753 fzdcel 9996 fzm1 10056 qletric 10200 qlelttric 10201 qdceq 10203 qsqeqor 10586 nn0o1gt2 11864 prm23lt5 12217 bj-fadc 13789 decidin 13832 triap 14061 tridceq 14088 |
Copyright terms: Public domain | W3C validator |