![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > olc | Unicode version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jaob 711 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simpri 113 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: oibabs 715 pm1.4 728 olci 733 pm2.07 738 pm2.46 740 biorf 745 pm1.5 766 pm2.41 777 pm4.78i 783 pm3.48 786 ordi 817 andi 819 pm4.72 828 stdcn 848 pm2.54dc 892 pm2.85dc 906 dcor 937 dedlemb 972 xoranor 1388 19.33 1495 hbor 1557 nford 1578 19.30dc 1638 19.43 1639 19.32r 1691 euor2 2100 mooran2 2115 r19.32r 2640 undif3ss 3421 undif4 3510 issod 4351 onsucelsucexmid 4563 sucprcreg 4582 0elnn 4652 acexmidlemph 5912 nntri3or 6548 swoord1 6618 swoord2 6619 exmidaclem 7270 exmidontri2or 7305 addlocprlem 7597 nqprloc 7607 apreap 8608 zletric 9364 zlelttric 9365 zmulcl 9373 zdceq 9395 zdcle 9396 zdclt 9397 nn0lt2 9401 elnn1uz2 9675 mnflt 9852 mnfltpnf 9854 xrltso 9865 fzdcel 10109 fzm1 10169 qletric 10314 qlelttric 10315 qdceq 10317 qdclt 10318 qsqeqor 10724 zzlesq 10782 nn0o1gt2 12049 prm23lt5 12404 gausslemma2dlem0f 15211 bj-fadc 15316 decidin 15359 triap 15589 tridceq 15616 |
Copyright terms: Public domain | W3C validator |