| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > olc | Unicode version | ||
| Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| olc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | jaob 711 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | 3 | simpri 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: oibabs 715 pm1.4 728 olci 733 pm2.07 738 pm2.46 740 biorf 745 pm1.5 766 pm2.41 777 pm4.78i 783 pm3.48 786 ordi 817 andi 819 pm4.72 828 stdcn 848 pm2.54dc 892 pm2.85dc 906 dcor 937 dedlemb 972 xoranor 1388 19.33 1498 hbor 1560 nford 1581 19.30dc 1641 19.43 1642 19.32r 1694 euor2 2103 mooran2 2118 r19.32r 2643 undif3ss 3425 undif4 3514 issod 4355 onsucelsucexmid 4567 sucprcreg 4586 0elnn 4656 acexmidlemph 5918 nntri3or 6560 swoord1 6630 swoord2 6631 exmidaclem 7293 exmidontri2or 7328 addlocprlem 7621 nqprloc 7631 apreap 8633 zletric 9389 zlelttric 9390 zmulcl 9398 zdceq 9420 zdcle 9421 zdclt 9422 nn0lt2 9426 elnn1uz2 9700 mnflt 9877 mnfltpnf 9879 xrltso 9890 fzdcel 10134 fzm1 10194 qletric 10350 qlelttric 10351 qdceq 10353 qdclt 10354 qsqeqor 10761 zzlesq 10819 nn0o1gt2 12089 prm23lt5 12459 gausslemma2dlem0f 15403 bj-fadc 15508 decidin 15551 triap 15786 tridceq 15813 |
| Copyright terms: Public domain | W3C validator |