| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > olc | Unicode version | ||
| Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| olc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | jaob 715 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | 3 | simpri 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: oibabs 719 pm1.4 732 olci 737 pm2.07 742 pm2.46 744 biorf 749 pm1.5 770 pm2.41 781 pm4.78i 787 pm3.48 790 ordi 821 andi 823 pm4.72 832 stdcn 852 pm2.54dc 896 pm2.85dc 910 dcor 941 dedlemb 976 anifpdc 992 xoranor 1419 19.33 1530 hbor 1592 nford 1613 19.30dc 1673 19.43 1674 19.32r 1726 euor2 2136 mooran2 2151 r19.32r 2677 undif3ss 3465 undif4 3554 issod 4410 onsucelsucexmid 4622 sucprcreg 4641 0elnn 4711 acexmidlemph 5994 nntri3or 6639 swoord1 6709 swoord2 6710 exmidaclem 7390 exmidontri2or 7428 addlocprlem 7722 nqprloc 7732 apreap 8734 zletric 9490 zlelttric 9491 zmulcl 9500 zdceq 9522 zdcle 9523 zdclt 9524 nn0lt2 9528 elnn1uz2 9802 mnflt 9979 mnfltpnf 9981 xrltso 9992 fzdcel 10236 fzm1 10296 qletric 10461 qlelttric 10462 qdceq 10464 qdclt 10465 qsqeqor 10872 zzlesq 10930 nn0o1gt2 12416 prm23lt5 12786 gausslemma2dlem0f 15733 umgrupgr 15912 umgrislfupgrenlem 15928 usgruspgr 15981 bj-fadc 16118 decidin 16161 triap 16397 tridceq 16424 |
| Copyright terms: Public domain | W3C validator |