| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > olc | Unicode version | ||
| Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| olc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | jaob 712 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | 3 | simpri 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: oibabs 716 pm1.4 729 olci 734 pm2.07 739 pm2.46 741 biorf 746 pm1.5 767 pm2.41 778 pm4.78i 784 pm3.48 787 ordi 818 andi 820 pm4.72 829 stdcn 849 pm2.54dc 893 pm2.85dc 907 dcor 938 dedlemb 973 xoranor 1397 19.33 1507 hbor 1569 nford 1590 19.30dc 1650 19.43 1651 19.32r 1703 euor2 2112 mooran2 2127 r19.32r 2652 undif3ss 3434 undif4 3523 issod 4367 onsucelsucexmid 4579 sucprcreg 4598 0elnn 4668 acexmidlemph 5939 nntri3or 6581 swoord1 6651 swoord2 6652 exmidaclem 7322 exmidontri2or 7357 addlocprlem 7650 nqprloc 7660 apreap 8662 zletric 9418 zlelttric 9419 zmulcl 9428 zdceq 9450 zdcle 9451 zdclt 9452 nn0lt2 9456 elnn1uz2 9730 mnflt 9907 mnfltpnf 9909 xrltso 9920 fzdcel 10164 fzm1 10224 qletric 10386 qlelttric 10387 qdceq 10389 qdclt 10390 qsqeqor 10797 zzlesq 10855 nn0o1gt2 12249 prm23lt5 12619 gausslemma2dlem0f 15564 bj-fadc 15727 decidin 15770 triap 16005 tridceq 16032 |
| Copyright terms: Public domain | W3C validator |