Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simplimdc | Unicode version |
Description: Simplification for a decidable proposition. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by Jim Kingdon, 29-Mar-2018.) |
Ref | Expression |
---|---|
simplimdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 607 | . 2 | |
2 | con1dc 846 | . 2 DECID | |
3 | 1, 2 | mpi 15 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: pm2.5gdc 856 dfandc 874 pm4.79dc 893 |
Copyright terms: Public domain | W3C validator |