Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.5gdc | GIF version |
Description: Negating an implication for a decidable antecedent. General instance of Theorem *2.5 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.) |
Ref | Expression |
---|---|
pm2.5gdc | ⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplimdc 855 | . . . 4 ⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → 𝜑)) | |
2 | 1 | imp 123 | . . 3 ⊢ ((DECID 𝜑 ∧ ¬ (𝜑 → 𝜓)) → 𝜑) |
3 | 2 | pm2.24d 617 | . 2 ⊢ ((DECID 𝜑 ∧ ¬ (𝜑 → 𝜓)) → (¬ 𝜑 → 𝜒)) |
4 | 3 | ex 114 | 1 ⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: pm2.5dc 862 pm2.521gdc 863 |
Copyright terms: Public domain | W3C validator |