ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.5gdc GIF version

Theorem pm2.5gdc 861
Description: Negating an implication for a decidable antecedent. General instance of Theorem *2.5 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
pm2.5gdc (DECID 𝜑 → (¬ (𝜑𝜓) → (¬ 𝜑𝜒)))

Proof of Theorem pm2.5gdc
StepHypRef Expression
1 simplimdc 855 . . . 4 (DECID 𝜑 → (¬ (𝜑𝜓) → 𝜑))
21imp 123 . . 3 ((DECID 𝜑 ∧ ¬ (𝜑𝜓)) → 𝜑)
32pm2.24d 617 . 2 ((DECID 𝜑 ∧ ¬ (𝜑𝜓)) → (¬ 𝜑𝜒))
43ex 114 1 (DECID 𝜑 → (¬ (𝜑𝜓) → (¬ 𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  pm2.5dc  862  pm2.521gdc  863
  Copyright terms: Public domain W3C validator