| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm2.5gdc | GIF version | ||
| Description: Negating an implication for a decidable antecedent. General instance of Theorem *2.5 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| pm2.5gdc | ⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simplimdc 861 | . . . 4 ⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → 𝜑)) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((DECID 𝜑 ∧ ¬ (𝜑 → 𝜓)) → 𝜑) | 
| 3 | 2 | pm2.24d 623 | . 2 ⊢ ((DECID 𝜑 ∧ ¬ (𝜑 → 𝜓)) → (¬ 𝜑 → 𝜒)) | 
| 4 | 3 | ex 115 | 1 ⊢ (DECID 𝜑 → (¬ (𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: pm2.5dc 868 pm2.521gdc 869 | 
| Copyright terms: Public domain | W3C validator |