ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.43 Unicode version

Theorem pm4.43 939
Description: Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
Assertion
Ref Expression
pm4.43  |-  ( ph  <->  ( ( ph  \/  ps )  /\  ( ph  \/  -.  ps ) ) )

Proof of Theorem pm4.43
StepHypRef Expression
1 pm3.24 683 . . 3  |-  -.  ( ps  /\  -.  ps )
21biorfi 736 . 2  |-  ( ph  <->  (
ph  \/  ( ps  /\ 
-.  ps ) ) )
3 ordi 806 . 2  |-  ( (
ph  \/  ( ps  /\ 
-.  ps ) )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  -.  ps ) ) )
42, 3bitri 183 1  |-  ( ph  <->  ( ( ph  \/  ps )  /\  ( ph  \/  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator