ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordi Unicode version

Theorem ordi 765
Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ordi  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )
) )

Proof of Theorem ordi
StepHypRef Expression
1 simpl 107 . . . 4  |-  ( ( ps  /\  ch )  ->  ps )
21orim2i 713 . . 3  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  -> 
( ph  \/  ps ) )
3 simpr 108 . . . 4  |-  ( ( ps  /\  ch )  ->  ch )
43orim2i 713 . . 3  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  -> 
( ph  \/  ch ) )
52, 4jca 300 . 2  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  -> 
( ( ph  \/  ps )  /\  ( ph  \/  ch ) ) )
6 orc 668 . . . 4  |-  ( ph  ->  ( ph  \/  ( ps  /\  ch ) ) )
76adantl 271 . . 3  |-  ( ( ( ph  \/  ps )  /\  ph )  -> 
( ph  \/  ( ps  /\  ch ) ) )
86adantr 270 . . . 4  |-  ( (
ph  /\  ch )  ->  ( ph  \/  ( ps  /\  ch ) ) )
9 olc 667 . . . 4  |-  ( ( ps  /\  ch )  ->  ( ph  \/  ( ps  /\  ch ) ) )
108, 9jaoian 744 . . 3  |-  ( ( ( ph  \/  ps )  /\  ch )  -> 
( ph  \/  ( ps  /\  ch ) ) )
117, 10jaodan 746 . 2  |-  ( ( ( ph  \/  ps )  /\  ( ph  \/  ch ) )  ->  ( ph  \/  ( ps  /\  ch ) ) )
125, 11impbii 124 1  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    \/ wo 664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  ordir  766  orddi  769  pm5.63dc  892  pm4.43  895  orbididc  899  undi  3247  undif4  3345  elnn1uz2  9094
  Copyright terms: Public domain W3C validator