ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordi Unicode version

Theorem ordi 806
Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ordi  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )
) )

Proof of Theorem ordi
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( ps  /\  ch )  ->  ps )
21orim2i 751 . . 3  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  -> 
( ph  \/  ps ) )
3 simpr 109 . . . 4  |-  ( ( ps  /\  ch )  ->  ch )
43orim2i 751 . . 3  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  -> 
( ph  \/  ch ) )
52, 4jca 304 . 2  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  -> 
( ( ph  \/  ps )  /\  ( ph  \/  ch ) ) )
6 orc 702 . . . 4  |-  ( ph  ->  ( ph  \/  ( ps  /\  ch ) ) )
76adantl 275 . . 3  |-  ( ( ( ph  \/  ps )  /\  ph )  -> 
( ph  \/  ( ps  /\  ch ) ) )
86adantr 274 . . . 4  |-  ( (
ph  /\  ch )  ->  ( ph  \/  ( ps  /\  ch ) ) )
9 olc 701 . . . 4  |-  ( ( ps  /\  ch )  ->  ( ph  \/  ( ps  /\  ch ) ) )
108, 9jaoian 785 . . 3  |-  ( ( ( ph  \/  ps )  /\  ch )  -> 
( ph  \/  ( ps  /\  ch ) ) )
117, 10jaodan 787 . 2  |-  ( ( ( ph  \/  ps )  /\  ( ph  \/  ch ) )  ->  ( ph  \/  ( ps  /\  ch ) ) )
125, 11impbii 125 1  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ordir  807  orddi  810  pm5.63dc  936  pm4.43  939  orbididc  943  undi  3370  undif4  3471  elnn1uz2  9545
  Copyright terms: Public domain W3C validator