ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biorfi Unicode version

Theorem biorfi 736
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.)
Hypothesis
Ref Expression
biorfi.1  |-  -.  ph
Assertion
Ref Expression
biorfi  |-  ( ps  <->  ( ps  \/  ph )
)

Proof of Theorem biorfi
StepHypRef Expression
1 biorfi.1 . 2  |-  -.  ph
2 orc 702 . . 3  |-  ( ps 
->  ( ps  \/  ph ) )
3 orel2 716 . . 3  |-  ( -. 
ph  ->  ( ( ps  \/  ph )  ->  ps ) )
42, 3impbid2 142 . 2  |-  ( -. 
ph  ->  ( ps  <->  ( ps  \/  ph ) ) )
51, 4ax-mp 5 1  |-  ( ps  <->  ( ps  \/  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.43  938  dn1dc  949  excxor  1367  un0  3438  opthprc  4650  frec0g  6357  if0ab  13549
  Copyright terms: Public domain W3C validator