| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > biorfi | Unicode version | ||
| Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| biorfi.1 | 
 | 
| Ref | Expression | 
|---|---|
| biorfi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biorfi.1 | 
. 2
 | |
| 2 | orc 713 | 
. . 3
 | |
| 3 | orel2 727 | 
. . 3
 | |
| 4 | 2, 3 | impbid2 143 | 
. 2
 | 
| 5 | 1, 4 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm4.43 951 dn1dc 962 excxor 1389 un0 3484 opthprc 4714 frec0g 6455 nninfwlporlemd 7238 gsum0g 13039 if0ab 15451 | 
| Copyright terms: Public domain | W3C validator |