ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.24 Unicode version

Theorem pm3.24 683
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
pm3.24  |-  -.  ( ph  /\  -.  ph )

Proof of Theorem pm3.24
StepHypRef Expression
1 notnot 619 . 2  |-  ( ph  ->  -.  -.  ph )
2 imnan 680 . 2  |-  ( (
ph  ->  -.  -.  ph )  <->  -.  ( ph  /\  -.  ph ) )
31, 2mpbi 144 1  |-  -.  ( ph  /\  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nnexmid  836  pm4.43  934  excxor  1360  nonconne  2339  dfnul2  3396  dfnul3  3397  rabnc  3426  axnul  4090  fiintim  6874  zeoxor  11764  unennn  12168
  Copyright terms: Public domain W3C validator