ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.24 Unicode version

Theorem pm3.24 694
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
pm3.24  |-  -.  ( ph  /\  -.  ph )

Proof of Theorem pm3.24
StepHypRef Expression
1 notnot 630 . 2  |-  ( ph  ->  -.  -.  ph )
2 imnan 691 . 2  |-  ( (
ph  ->  -.  -.  ph )  <->  -.  ( ph  /\  -.  ph ) )
31, 2mpbi 145 1  |-  -.  ( ph  /\  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnexmid  851  pm4.43  951  excxor  1389  nonconne  2372  dfnul2  3439  dfnul3  3440  rabnc  3470  axnul  4143  fiintim  6957  zeoxor  11906  unennn  12448
  Copyright terms: Public domain W3C validator