ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.16 Unicode version

Theorem pm5.16 818
Description: Theorem *5.16 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm5.16  |-  -.  (
( ph  <->  ps )  /\  ( ph 
<->  -.  ps ) )

Proof of Theorem pm5.16
StepHypRef Expression
1 pm5.19 696 . 2  |-  -.  ( ps 
<->  -.  ps )
2 simpl 108 . . 3  |-  ( ( ( ph  <->  ps )  /\  ( ph  <->  -.  ps )
)  ->  ( ph  <->  ps ) )
3 simpr 109 . . 3  |-  ( ( ( ph  <->  ps )  /\  ( ph  <->  -.  ps )
)  ->  ( ph  <->  -. 
ps ) )
42, 3bitr3d 189 . 2  |-  ( ( ( ph  <->  ps )  /\  ( ph  <->  -.  ps )
)  ->  ( ps  <->  -. 
ps ) )
51, 4mto 652 1  |-  -.  (
( ph  <->  ps )  /\  ( ph 
<->  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator