| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3d | Unicode version | ||
| Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3d.1 |
|
| bitr3d.2 |
|
| Ref | Expression |
|---|---|
| bitr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3d.1 |
. . 3
| |
| 2 | 1 | bicomd 141 |
. 2
|
| 3 | bitr3d.2 |
. 2
| |
| 4 | 2, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 829 biassdc 1406 pm5.24dc 1409 anxordi 1411 sbequ12a 1787 drex1 1812 sbcomxyyz 1991 sb9v 1997 csbiebt 3124 prsspwg 3783 bnd2 4207 copsex2t 4279 copsex2g 4280 fnssresb 5373 fcnvres 5444 foelcdmi 5616 dmfco 5632 funimass5 5682 fmptco 5731 cbvfo 5835 cbvexfo 5836 isocnv 5861 isoini 5868 isoselem 5870 riota2df 5901 ovmpodxf 6052 caovcanrd 6091 fidcenumlemrks 7028 ordiso2 7110 ltpiord 7405 dfplpq2 7440 dfmpq2 7441 enqeceq 7445 enq0eceq 7523 enreceq 7822 ltpsrprg 7889 mappsrprg 7890 cnegexlem3 8222 subeq0 8271 negcon1 8297 subexsub 8417 subeqrev 8421 lesub 8487 ltsub13 8489 subge0 8521 div11ap 8746 divmuleqap 8763 ltmuldiv2 8921 lemuldiv2 8928 nn1suc 9028 addltmul 9247 elnnnn0 9311 znn0sub 9410 prime 9444 indstr 9686 qapne 9732 qlttri2 9734 fz1n 10138 fzrev3 10181 fzonlt0 10262 divfl0 10405 modqsubdir 10504 fzfig 10541 wrdlenge1n0 10987 sqrt11 11223 sqrtsq2 11227 absdiflt 11276 absdifle 11277 nnabscl 11284 minclpr 11421 xrnegiso 11446 xrnegcon1d 11448 clim2 11467 climshft2 11490 sumrbdc 11563 prodrbdclem2 11757 fprodssdc 11774 sinbnd 11936 cosbnd 11937 dvdscmulr 12004 dvdsmulcr 12005 oddm1even 12059 bitsmod 12140 bitsinv1lem 12145 qredeq 12291 cncongr2 12299 isprm3 12313 prmrp 12340 sqrt2irr 12357 crth 12419 pcdvdsb 12516 ssnnctlemct 12690 pwselbasb 12997 xpsfrnel2 13050 gsumval2 13101 imasmnd2 13156 grpid 13243 grpidrcan 13269 grpidlcan 13270 grplmulf1o 13278 imasgrp2 13318 ghmeqker 13479 abladdsub4 13522 imasrng 13590 imasring 13698 lspsnss2 14053 znf1o 14285 znidom 14291 znunit 14293 znrrg 14294 eltg3 14379 eltop 14391 eltop2 14392 eltop3 14393 lmbrf 14537 cncnpi 14550 txcn 14597 hmeoimaf1o 14636 ismet2 14676 xmseq0 14790 wilthlem1 15302 fsumdvdsmul 15313 lgsne0 15365 lgsquadlem1 15404 lgsquadlem2 15405 2sqlem7 15448 |
| Copyright terms: Public domain | W3C validator |