| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3d | Unicode version | ||
| Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3d.1 |
|
| bitr3d.2 |
|
| Ref | Expression |
|---|---|
| bitr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3d.1 |
. . 3
| |
| 2 | 1 | bicomd 141 |
. 2
|
| 3 | bitr3d.2 |
. 2
| |
| 4 | 2, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 832 biassdc 1417 pm5.24dc 1420 anxordi 1422 sbequ12a 1799 drex1 1824 sbcomxyyz 2003 sb9v 2009 csbiebt 3144 prsspwg 3807 ssprss 3808 bnd2 4236 copsex2t 4310 copsex2g 4311 fnssresb 5411 fcnvres 5485 foelcdmi 5659 dmfco 5675 funimass5 5725 fmptco 5774 cbvfo 5882 cbvexfo 5883 isocnv 5908 isoini 5915 isoselem 5917 riota2df 5949 ovmpodxf 6101 caovcanrd 6140 fidcenumlemrks 7088 ordiso2 7170 ltpiord 7474 dfplpq2 7509 dfmpq2 7510 enqeceq 7514 enq0eceq 7592 enreceq 7891 ltpsrprg 7958 mappsrprg 7959 cnegexlem3 8291 subeq0 8340 negcon1 8366 subexsub 8486 subeqrev 8490 lesub 8556 ltsub13 8558 subge0 8590 div11ap 8815 divmuleqap 8832 ltmuldiv2 8990 lemuldiv2 8997 nn1suc 9097 addltmul 9316 elnnnn0 9380 znn0sub 9480 prime 9514 indstr 9756 qapne 9802 qlttri2 9804 fz1n 10208 fzrev3 10251 fzo0n 10332 fzonlt0 10333 divfl0 10483 modqsubdir 10582 fzfig 10619 wrdlenge1n0 11071 pfxccat3a 11236 sqrt11 11516 sqrtsq2 11520 absdiflt 11569 absdifle 11570 nnabscl 11577 minclpr 11714 xrnegiso 11739 xrnegcon1d 11741 clim2 11760 climshft2 11783 sumrbdc 11856 prodrbdclem2 12050 fprodssdc 12067 sinbnd 12229 cosbnd 12230 dvdscmulr 12297 dvdsmulcr 12298 oddm1even 12352 bitsmod 12433 bitsinv1lem 12438 qredeq 12584 cncongr2 12592 isprm3 12606 prmrp 12633 sqrt2irr 12650 crth 12712 pcdvdsb 12809 ssnnctlemct 12983 pwselbasb 13292 xpsfrnel2 13345 gsumval2 13396 imasmnd2 13451 grpid 13538 grpidrcan 13564 grpidlcan 13565 grplmulf1o 13573 imasgrp2 13613 ghmeqker 13774 abladdsub4 13817 imasrng 13885 imasring 13993 lspsnss2 14348 znf1o 14580 znidom 14586 znunit 14588 znrrg 14589 eltg3 14696 eltop 14708 eltop2 14709 eltop3 14710 lmbrf 14854 cncnpi 14867 txcn 14914 hmeoimaf1o 14953 ismet2 14993 xmseq0 15107 wilthlem1 15619 fsumdvdsmul 15630 lgsne0 15682 lgsquadlem1 15721 lgsquadlem2 15722 2sqlem7 15765 |
| Copyright terms: Public domain | W3C validator |