Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3d | Unicode version |
Description: Deduction form of bitr3i 185. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 | |
bitr3d.2 |
Ref | Expression |
---|---|
bitr3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 | . . 3 | |
2 | 1 | bicomd 140 | . 2 |
3 | bitr3d.2 | . 2 | |
4 | 2, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr3d 217 3bitr3rd 218 pm5.16 818 biassdc 1385 pm5.24dc 1388 anxordi 1390 sbequ12a 1761 drex1 1786 sbcomxyyz 1960 sb9v 1966 csbiebt 3084 prsspwg 3732 bnd2 4152 copsex2t 4223 copsex2g 4224 fnssresb 5300 fcnvres 5371 dmfco 5554 funimass5 5602 fmptco 5651 cbvfo 5753 cbvexfo 5754 isocnv 5779 isoini 5786 isoselem 5788 riota2df 5818 ovmpodxf 5967 caovcanrd 6005 fidcenumlemrks 6918 ordiso2 7000 ltpiord 7260 dfplpq2 7295 dfmpq2 7296 enqeceq 7300 enq0eceq 7378 enreceq 7677 ltpsrprg 7744 mappsrprg 7745 cnegexlem3 8075 subeq0 8124 negcon1 8150 subexsub 8270 subeqrev 8274 lesub 8339 ltsub13 8341 subge0 8373 div11ap 8596 divmuleqap 8613 ltmuldiv2 8770 lemuldiv2 8777 nn1suc 8876 addltmul 9093 elnnnn0 9157 znn0sub 9256 prime 9290 indstr 9531 qapne 9577 qlttri2 9579 fz1n 9979 fzrev3 10022 fzonlt0 10102 divfl0 10231 modqsubdir 10328 fzfig 10365 sqrt11 10981 sqrtsq2 10985 absdiflt 11034 absdifle 11035 nnabscl 11042 minclpr 11178 xrnegiso 11203 xrnegcon1d 11205 clim2 11224 climshft2 11247 sumrbdc 11320 prodrbdclem2 11514 fprodssdc 11531 sinbnd 11693 cosbnd 11694 dvdscmulr 11760 dvdsmulcr 11761 oddm1even 11812 qredeq 12028 cncongr2 12036 isprm3 12050 prmrp 12077 sqrt2irr 12094 crth 12156 pcdvdsb 12251 ssnnctlemct 12379 eltg3 12707 eltop 12719 eltop2 12720 eltop3 12721 lmbrf 12865 cncnpi 12878 txcn 12925 hmeoimaf1o 12964 ismet2 13004 xmseq0 13118 lgsne0 13589 2sqlem7 13607 |
Copyright terms: Public domain | W3C validator |