![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3d | Unicode version |
Description: Deduction form of bitr3i 185. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bitr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomd 140 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitrd 187 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr3d 217 3bitr3rd 218 pm5.16 796 biassdc 1354 pm5.24dc 1357 anxordi 1359 sbequ12a 1727 drex1 1750 sbcomxyyz 1919 sb9v 1927 csbiebt 3003 prsspwg 3643 bnd2 4055 copsex2t 4125 copsex2g 4126 fnssresb 5191 fcnvres 5262 dmfco 5441 funimass5 5489 fmptco 5538 cbvfo 5638 cbvexfo 5639 isocnv 5664 isoini 5671 isoselem 5673 riota2df 5702 ovmpodxf 5848 caovcanrd 5886 fidcenumlemrks 6791 ordiso2 6870 ltpiord 7069 dfplpq2 7104 dfmpq2 7105 enqeceq 7109 enq0eceq 7187 enreceq 7473 cnegexlem3 7856 subeq0 7905 negcon1 7931 subexsub 8047 subeqrev 8051 lesub 8116 ltsub13 8118 subge0 8150 div11ap 8367 divmuleqap 8384 ltmuldiv2 8537 lemuldiv2 8544 nn1suc 8643 addltmul 8854 elnnnn0 8918 znn0sub 9017 prime 9048 indstr 9284 qapne 9327 qlttri2 9329 fz1n 9711 fzrev3 9754 fzonlt0 9831 divfl0 9956 modqsubdir 10053 fzfig 10090 sqrt11 10697 sqrtsq2 10701 absdiflt 10750 absdifle 10751 nnabscl 10758 minclpr 10894 xrnegiso 10917 xrnegcon1d 10919 clim2 10938 climshft2 10961 sumrbdc 11033 sinbnd 11304 cosbnd 11305 dvdscmulr 11364 dvdsmulcr 11365 oddm1even 11414 qredeq 11617 cncongr2 11625 isprm3 11639 prmrp 11663 sqrt2irr 11680 crth 11739 eltg3 12063 eltop 12075 eltop2 12076 eltop3 12077 lmbrf 12220 cncnpi 12233 txcn 12280 ismet2 12337 xmseq0 12451 |
Copyright terms: Public domain | W3C validator |