| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | Unicode version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 |
|
| mto.2 |
|
| Ref | Expression |
|---|---|
| mto |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 |
. 2
| |
| 2 | mto.1 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbi 671 pm3.2ni 814 pm5.16 829 intnan 930 intnanr 931 equidqe 1546 nexr 1706 ru 2988 neldifsn 3753 nvel 4167 nlim0 4430 snnex 4484 onprc 4589 dtruex 4596 ordsoexmid 4599 nprrel 4709 0xp 4744 iprc 4935 son2lpi 5067 nfunv 5292 0fv 5597 canth 5878 acexmidlema 5916 acexmidlemb 5917 acexmidlemab 5919 mpo0 5996 php5dom 6933 fi0 7050 pw1ne1 7312 pw1ne3 7313 sucpw1nel3 7316 3nelsucpw1 7317 0nnq 7448 0npr 7567 1ne0sr 7850 pnfnre 8085 mnfnre 8086 ine0 8437 inelr 8628 nn0nepnf 9337 1nuz2 9697 0nrp 9781 inftonninf 10551 eirr 11961 odd2np1 12055 n2dvds1 12094 1nprm 12307 structcnvcnv 12719 fvsetsid 12737 fnpr2ob 13042 0g0 13078 0ntop 14327 topnex 14406 bj-nvel 15627 pwle2 15729 exmidsbthrlem 15753 trirec0xor 15776 |
| Copyright terms: Public domain | W3C validator |