| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | Unicode version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 |
|
| mto.2 |
|
| Ref | Expression |
|---|---|
| mto |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 |
. 2
| |
| 2 | mto.1 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbi 671 pm3.2ni 814 pm5.16 829 intnan 930 intnanr 931 equidqe 1546 nexr 1706 ru 2988 neldifsn 3753 nvel 4167 nlim0 4430 snnex 4484 onprc 4589 dtruex 4596 ordsoexmid 4599 nprrel 4709 0xp 4744 iprc 4935 son2lpi 5067 nfunv 5292 0fv 5595 canth 5876 acexmidlema 5914 acexmidlemb 5915 acexmidlemab 5917 mpo0 5993 php5dom 6925 fi0 7042 pw1ne1 7298 pw1ne3 7299 sucpw1nel3 7302 3nelsucpw1 7303 0nnq 7433 0npr 7552 1ne0sr 7835 pnfnre 8070 mnfnre 8071 ine0 8422 inelr 8613 nn0nepnf 9322 1nuz2 9682 0nrp 9766 inftonninf 10536 eirr 11946 odd2np1 12040 n2dvds1 12079 1nprm 12292 structcnvcnv 12704 fvsetsid 12722 fnpr2ob 12993 0g0 13029 0ntop 14253 topnex 14332 bj-nvel 15553 pwle2 15653 exmidsbthrlem 15676 trirec0xor 15699 |
| Copyright terms: Public domain | W3C validator |