| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | Unicode version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 |
|
| mto.2 |
|
| Ref | Expression |
|---|---|
| mto |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 |
. 2
| |
| 2 | mto.1 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbi 672 pm3.2ni 815 pm5.16 830 intnan 931 intnanr 932 equidqe 1555 nexr 1715 ru 2997 neldifsn 3763 nvel 4178 nlim0 4442 snnex 4496 onprc 4601 dtruex 4608 ordsoexmid 4611 nprrel 4721 0xp 4756 iprc 4948 son2lpi 5080 nfunv 5305 0fv 5614 canth 5899 acexmidlema 5937 acexmidlemb 5938 acexmidlemab 5940 mpo0 6017 php5dom 6962 fi0 7079 pw1ne1 7343 pw1ne3 7344 sucpw1nel3 7347 3nelsucpw1 7348 0nnq 7479 0npr 7598 1ne0sr 7881 pnfnre 8116 mnfnre 8117 ine0 8468 inelr 8659 nn0nepnf 9368 1nuz2 9729 0nrp 9813 inftonninf 10589 lsw0 11043 eirr 12123 odd2np1 12217 n2dvds1 12256 1nprm 12469 structcnvcnv 12881 fvsetsid 12899 fnpr2ob 13205 0g0 13241 0ntop 14512 topnex 14591 bj-nvel 15870 pwle2 15972 exmidsbthrlem 15998 trirec0xor 16021 |
| Copyright terms: Public domain | W3C validator |