![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mto | Unicode version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 |
![]() ![]() ![]() |
mto.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mto |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mto.1 |
. . 3
![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | pm2.65i 639 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtbi 670 pm3.2ni 813 pm5.16 828 intnan 929 intnanr 930 equidqe 1532 nexr 1692 ru 2963 neldifsn 3724 nvel 4138 nlim0 4396 snnex 4450 onprc 4553 dtruex 4560 ordsoexmid 4563 nprrel 4673 0xp 4708 iprc 4897 son2lpi 5027 nfunv 5251 0fv 5552 canth 5832 acexmidlema 5869 acexmidlemb 5870 acexmidlemab 5872 mpo0 5948 php5dom 6866 fi0 6977 pw1ne1 7231 pw1ne3 7232 sucpw1nel3 7235 3nelsucpw1 7236 0nnq 7366 0npr 7485 1ne0sr 7768 pnfnre 8002 mnfnre 8003 ine0 8354 inelr 8544 nn0nepnf 9250 1nuz2 9609 0nrp 9692 inftonninf 10444 eirr 11789 odd2np1 11881 n2dvds1 11920 1nprm 12117 structcnvcnv 12481 fvsetsid 12499 fnpr2ob 12765 0g0 12801 0ntop 13647 topnex 13726 bj-nvel 14789 pwle2 14889 exmidsbthrlem 14911 trirec0xor 14934 |
Copyright terms: Public domain | W3C validator |