| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | Unicode version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 |
|
| mto.2 |
|
| Ref | Expression |
|---|---|
| mto |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 |
. 2
| |
| 2 | mto.1 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | pm2.65i 642 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mtbi 674 pm3.2ni 818 pm5.16 833 intnan 934 intnanr 935 equidqe 1578 nexr 1738 ru 3027 neldifsn 3798 nvel 4217 nlim0 4485 snnex 4539 onprc 4644 dtruex 4651 ordsoexmid 4654 nprrel 4764 0xp 4799 iprc 4993 son2lpi 5125 nfunv 5351 0fv 5665 canth 5952 acexmidlema 5992 acexmidlemb 5993 acexmidlemab 5995 mpo0 6074 php5dom 7024 1ndom2 7026 fi0 7142 pw1ne1 7414 pw1ne3 7415 sucpw1nel3 7418 3nelsucpw1 7419 0nnq 7551 0npr 7670 1ne0sr 7953 pnfnre 8188 mnfnre 8189 ine0 8540 inelr 8731 nn0nepnf 9440 1nuz2 9801 0nrp 9885 inftonninf 10664 lsw0 11119 eirr 12290 odd2np1 12384 n2dvds1 12423 1nprm 12636 structcnvcnv 13048 fvsetsid 13066 fnpr2ob 13373 0g0 13409 0ntop 14681 topnex 14760 umgredgnlp 15950 bj-nvel 16260 pwle2 16364 exmidsbthrlem 16390 trirec0xor 16413 |
| Copyright terms: Public domain | W3C validator |