![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mto | Unicode version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 |
![]() ![]() ![]() |
mto.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mto |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mto.1 |
. . 3
![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | pm2.65i 640 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: mtbi 671 pm3.2ni 814 pm5.16 829 intnan 930 intnanr 931 equidqe 1543 nexr 1703 ru 2984 neldifsn 3748 nvel 4162 nlim0 4425 snnex 4479 onprc 4584 dtruex 4591 ordsoexmid 4594 nprrel 4704 0xp 4739 iprc 4930 son2lpi 5062 nfunv 5287 0fv 5590 canth 5871 acexmidlema 5909 acexmidlemb 5910 acexmidlemab 5912 mpo0 5988 php5dom 6919 fi0 7034 pw1ne1 7289 pw1ne3 7290 sucpw1nel3 7293 3nelsucpw1 7294 0nnq 7424 0npr 7543 1ne0sr 7826 pnfnre 8061 mnfnre 8062 ine0 8413 inelr 8603 nn0nepnf 9311 1nuz2 9671 0nrp 9755 inftonninf 10513 eirr 11922 odd2np1 12014 n2dvds1 12053 1nprm 12252 structcnvcnv 12634 fvsetsid 12652 fnpr2ob 12923 0g0 12959 0ntop 14175 topnex 14254 bj-nvel 15389 pwle2 15489 exmidsbthrlem 15512 trirec0xor 15535 |
Copyright terms: Public domain | W3C validator |