![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mto | Unicode version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 |
![]() ![]() ![]() |
mto.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mto |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mto.1 |
. . 3
![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | pm2.65i 640 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: mtbi 671 pm3.2ni 814 pm5.16 829 intnan 930 intnanr 931 equidqe 1543 nexr 1703 ru 2985 neldifsn 3749 nvel 4163 nlim0 4426 snnex 4480 onprc 4585 dtruex 4592 ordsoexmid 4595 nprrel 4705 0xp 4740 iprc 4931 son2lpi 5063 nfunv 5288 0fv 5591 canth 5872 acexmidlema 5910 acexmidlemb 5911 acexmidlemab 5913 mpo0 5989 php5dom 6921 fi0 7036 pw1ne1 7291 pw1ne3 7292 sucpw1nel3 7295 3nelsucpw1 7296 0nnq 7426 0npr 7545 1ne0sr 7828 pnfnre 8063 mnfnre 8064 ine0 8415 inelr 8605 nn0nepnf 9314 1nuz2 9674 0nrp 9758 inftonninf 10516 eirr 11925 odd2np1 12017 n2dvds1 12056 1nprm 12255 structcnvcnv 12637 fvsetsid 12655 fnpr2ob 12926 0g0 12962 0ntop 14186 topnex 14265 bj-nvel 15459 pwle2 15559 exmidsbthrlem 15582 trirec0xor 15605 |
Copyright terms: Public domain | W3C validator |