![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mto | Unicode version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 |
![]() ![]() ![]() |
mto.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mto |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mto.1 |
. . 3
![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | pm2.65i 639 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtbi 670 pm3.2ni 813 pm5.16 828 intnan 929 intnanr 930 equidqe 1532 nexr 1692 ru 2962 neldifsn 3723 nvel 4137 nlim0 4395 snnex 4449 onprc 4552 dtruex 4559 ordsoexmid 4562 nprrel 4672 0xp 4707 iprc 4896 son2lpi 5026 nfunv 5250 0fv 5551 canth 5829 acexmidlema 5866 acexmidlemb 5867 acexmidlemab 5869 mpo0 5945 php5dom 6863 fi0 6974 pw1ne1 7228 pw1ne3 7229 sucpw1nel3 7232 3nelsucpw1 7233 0nnq 7363 0npr 7482 1ne0sr 7765 pnfnre 7999 mnfnre 8000 ine0 8351 inelr 8541 nn0nepnf 9247 1nuz2 9606 0nrp 9689 inftonninf 10441 eirr 11786 odd2np1 11878 n2dvds1 11917 1nprm 12114 structcnvcnv 12478 fvsetsid 12496 fnpr2ob 12759 0g0 12795 0ntop 13510 topnex 13589 bj-nvel 14652 pwle2 14751 exmidsbthrlem 14773 trirec0xor 14796 |
Copyright terms: Public domain | W3C validator |