| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | Unicode version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 |
|
| mto.2 |
|
| Ref | Expression |
|---|---|
| mto |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 |
. 2
| |
| 2 | mto.1 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbi 672 pm3.2ni 815 pm5.16 830 intnan 931 intnanr 932 equidqe 1556 nexr 1716 ru 3004 neldifsn 3774 nvel 4193 nlim0 4459 snnex 4513 onprc 4618 dtruex 4625 ordsoexmid 4628 nprrel 4738 0xp 4773 iprc 4966 son2lpi 5098 nfunv 5323 0fv 5635 canth 5920 acexmidlema 5958 acexmidlemb 5959 acexmidlemab 5961 mpo0 6038 php5dom 6985 1ndom2 6987 fi0 7103 pw1ne1 7375 pw1ne3 7376 sucpw1nel3 7379 3nelsucpw1 7380 0nnq 7512 0npr 7631 1ne0sr 7914 pnfnre 8149 mnfnre 8150 ine0 8501 inelr 8692 nn0nepnf 9401 1nuz2 9762 0nrp 9846 inftonninf 10624 lsw0 11078 eirr 12205 odd2np1 12299 n2dvds1 12338 1nprm 12551 structcnvcnv 12963 fvsetsid 12981 fnpr2ob 13287 0g0 13323 0ntop 14594 topnex 14673 umgredgnlp 15856 bj-nvel 16032 pwle2 16137 exmidsbthrlem 16163 trirec0xor 16186 |
| Copyright terms: Public domain | W3C validator |