| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mto | Unicode version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| mto.1 | 
 | 
| mto.2 | 
 | 
| Ref | Expression | 
|---|---|
| mto | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mto.2 | 
. 2
 | |
| 2 | mto.1 | 
. . 3
 | |
| 3 | 2 | a1i 9 | 
. 2
 | 
| 4 | 1, 3 | pm2.65i 640 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: mtbi 671 pm3.2ni 814 pm5.16 829 intnan 930 intnanr 931 equidqe 1546 nexr 1706 ru 2988 neldifsn 3752 nvel 4166 nlim0 4429 snnex 4483 onprc 4588 dtruex 4595 ordsoexmid 4598 nprrel 4708 0xp 4743 iprc 4934 son2lpi 5066 nfunv 5291 0fv 5594 canth 5875 acexmidlema 5913 acexmidlemb 5914 acexmidlemab 5916 mpo0 5992 php5dom 6924 fi0 7041 pw1ne1 7296 pw1ne3 7297 sucpw1nel3 7300 3nelsucpw1 7301 0nnq 7431 0npr 7550 1ne0sr 7833 pnfnre 8068 mnfnre 8069 ine0 8420 inelr 8611 nn0nepnf 9320 1nuz2 9680 0nrp 9764 inftonninf 10534 eirr 11944 odd2np1 12038 n2dvds1 12077 1nprm 12282 structcnvcnv 12694 fvsetsid 12712 fnpr2ob 12983 0g0 13019 0ntop 14243 topnex 14322 bj-nvel 15543 pwle2 15643 exmidsbthrlem 15666 trirec0xor 15689 | 
| Copyright terms: Public domain | W3C validator |