ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biort Unicode version

Theorem biort 815
Description: A disjunction with a true formula is equivalent to that true formula. (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
biort  |-  ( ph  ->  ( ph  <->  ( ph  \/  ps ) ) )

Proof of Theorem biort
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 orc 702 . 2  |-  ( ph  ->  ( ph  \/  ps ) )
31, 22thd 174 1  |-  ( ph  ->  ( ph  <->  ( ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.55dc  899
  Copyright terms: Public domain W3C validator