Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.54dc | Unicode version |
Description: A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.) |
Ref | Expression |
---|---|
pm5.54dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 825 | . . 3 DECID | |
2 | simpr 109 | . . . . 5 | |
3 | ax-ia3 107 | . . . . 5 | |
4 | 2, 3 | impbid2 142 | . . . 4 |
5 | simpl 108 | . . . . 5 | |
6 | ax-in2 605 | . . . . 5 | |
7 | 5, 6 | impbid2 142 | . . . 4 |
8 | 4, 7 | orim12i 749 | . . 3 |
9 | 1, 8 | sylbi 120 | . 2 DECID |
10 | 9 | orcomd 719 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |