Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.54dc | GIF version |
Description: A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.) |
Ref | Expression |
---|---|
pm5.54dc | ⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 830 | . . 3 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
2 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | ax-ia3 107 | . . . . 5 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | impbid2 142 | . . . 4 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
5 | simpl 108 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
6 | ax-in2 610 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → (𝜑 ∧ 𝜓))) | |
7 | 5, 6 | impbid2 142 | . . . 4 ⊢ (¬ 𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜑)) |
8 | 4, 7 | orim12i 754 | . . 3 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 ∧ 𝜓) ↔ 𝜓) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜑))) |
9 | 1, 8 | sylbi 120 | . 2 ⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜓) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜑))) |
10 | 9 | orcomd 724 | 1 ⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-dc 830 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |