ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baib Unicode version

Theorem baib 905
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
Hypothesis
Ref Expression
baib.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
baib  |-  ( ps 
->  ( ph  <->  ch )
)

Proof of Theorem baib
StepHypRef Expression
1 baib.1 . 2  |-  ( ph  <->  ( ps  /\  ch )
)
2 ibar 299 . 2  |-  ( ps 
->  ( ch  <->  ( ps  /\ 
ch ) ) )
31, 2bitr4id 198 1  |-  ( ps 
->  ( ph  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  baibr  906  rbaib  907  ceqsrexbv  2843  elrab3  2869  rabsn  3626  elrint2  3848  frind  4311  fnres  5283  f1ompt  5615  fliftfun  5741  ovid  5931  brdifun  6500  xpcomco  6764  ltexprlemdisj  7509  xrlenlt  7925  reapval  8434  znnnlt1  9198  difrp  9581  elfz  9900  fzolb2  10035  elfzo3  10044  fzouzsplit  10060  rpexp  12007  bastop1  12443  cnntr  12585  lmres  12608  tx1cn  12629  tx2cn  12630  xmetec  12797
  Copyright terms: Public domain W3C validator