ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.71dc Unicode version

Theorem pm5.71dc 961
Description: Decidable proposition version of theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) (Modified for decidability by Jim Kingdon, 19-Apr-2018.)
Assertion
Ref Expression
pm5.71dc  |-  (DECID  ps  ->  ( ( ps  ->  -.  ch )  ->  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ph  /\ 
ch ) ) ) )

Proof of Theorem pm5.71dc
StepHypRef Expression
1 orel2 726 . . . . 5  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  ->  ph )
)
2 orc 712 . . . . 5  |-  ( ph  ->  ( ph  \/  ps ) )
31, 2impbid1 142 . . . 4  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  <->  ph ) )
43anbi1d 465 . . 3  |-  ( -. 
ps  ->  ( ( (
ph  \/  ps )  /\  ch )  <->  ( ph  /\ 
ch ) ) )
54a1i 9 . 2  |-  (DECID  ps  ->  ( -.  ps  ->  (
( ( ph  \/  ps )  /\  ch )  <->  (
ph  /\  ch )
) ) )
6 pm2.21 617 . . 3  |-  ( -. 
ch  ->  ( ch  ->  ( ( ph  \/  ps ) 
<-> 
ph ) ) )
76pm5.32rd 451 . 2  |-  ( -. 
ch  ->  ( ( (
ph  \/  ps )  /\  ch )  <->  ( ph  /\ 
ch ) ) )
85, 7jadc 863 1  |-  (DECID  ps  ->  ( ( ps  ->  -.  ch )  ->  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ph  /\ 
ch ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator