ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.71dc GIF version

Theorem pm5.71dc 928
Description: Decidable proposition version of theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) (Modified for decidability by Jim Kingdon, 19-Apr-2018.)
Assertion
Ref Expression
pm5.71dc (DECID 𝜓 → ((𝜓 → ¬ 𝜒) → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒))))

Proof of Theorem pm5.71dc
StepHypRef Expression
1 orel2 698 . . . . 5 𝜓 → ((𝜑𝜓) → 𝜑))
2 orc 684 . . . . 5 (𝜑 → (𝜑𝜓))
31, 2impbid1 141 . . . 4 𝜓 → ((𝜑𝜓) ↔ 𝜑))
43anbi1d 458 . . 3 𝜓 → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒)))
54a1i 9 . 2 (DECID 𝜓 → (¬ 𝜓 → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒))))
6 pm2.21 589 . . 3 𝜒 → (𝜒 → ((𝜑𝜓) ↔ 𝜑)))
76pm5.32rd 444 . 2 𝜒 → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒)))
85, 7jadc 831 1 (DECID 𝜓 → ((𝜓 → ¬ 𝜒) → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  DECID wdc 802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 587  ax-io 681
This theorem depends on definitions:  df-bi 116  df-dc 803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator