Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.71dc | GIF version |
Description: Decidable proposition version of theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) (Modified for decidability by Jim Kingdon, 19-Apr-2018.) |
Ref | Expression |
---|---|
pm5.71dc | ⊢ (DECID 𝜓 → ((𝜓 → ¬ 𝜒) → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orel2 716 | . . . . 5 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) → 𝜑)) | |
2 | orc 702 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | 1, 2 | impbid1 141 | . . . 4 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) ↔ 𝜑)) |
4 | 3 | anbi1d 461 | . . 3 ⊢ (¬ 𝜓 → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒))) |
5 | 4 | a1i 9 | . 2 ⊢ (DECID 𝜓 → (¬ 𝜓 → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒)))) |
6 | pm2.21 607 | . . 3 ⊢ (¬ 𝜒 → (𝜒 → ((𝜑 ∨ 𝜓) ↔ 𝜑))) | |
7 | 6 | pm5.32rd 447 | . 2 ⊢ (¬ 𝜒 → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒))) |
8 | 5, 7 | jadc 853 | 1 ⊢ (DECID 𝜓 → ((𝜓 → ¬ 𝜒) → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |