ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp21 Unicode version

Theorem simp21 979
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp21  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )  /\  ta )  ->  ps )

Proof of Theorem simp21
StepHypRef Expression
1 simp1 946 . 2  |-  ( ( ps  /\  ch  /\  th )  ->  ps )
213ad2ant2 968 1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 929
This theorem is referenced by:  simpl21  1024  simpr21  1033  simp121  1078  simp221  1087  simp321  1096
  Copyright terms: Public domain W3C validator