| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgdirlem | Unicode version | ||
| Description: Lemma for mulgdir 13408. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnndir.b |
|
| mulgnndir.t |
|
| mulgnndir.p |
|
| Ref | Expression |
|---|---|
| mulgdirlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 |
. . . . . 6
| |
| 2 | 1 | grpmndd 13263 |
. . . . 5
|
| 3 | simprl 529 |
. . . . 5
| |
| 4 | simprr 531 |
. . . . 5
| |
| 5 | simpl23 1079 |
. . . . 5
| |
| 6 | mulgnndir.b |
. . . . . 6
| |
| 7 | mulgnndir.t |
. . . . . 6
| |
| 8 | mulgnndir.p |
. . . . . 6
| |
| 9 | 6, 7, 8 | mulgnn0dir 13406 |
. . . . 5
|
| 10 | 2, 3, 4, 5, 9 | syl13anc 1251 |
. . . 4
|
| 11 | 10 | anassrs 400 |
. . 3
|
| 12 | simpl1 1002 |
. . . . . . . . . 10
| |
| 13 | simp22 1033 |
. . . . . . . . . . 11
| |
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
|
| 15 | simpl23 1079 |
. . . . . . . . . 10
| |
| 16 | eqid 2204 |
. . . . . . . . . . 11
| |
| 17 | 6, 7, 16 | mulgneg 13394 |
. . . . . . . . . 10
|
| 18 | 12, 14, 15, 17 | syl3anc 1249 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 5949 |
. . . . . . . 8
|
| 20 | 6, 7 | mulgcl 13393 |
. . . . . . . . . 10
|
| 21 | 12, 14, 15, 20 | syl3anc 1249 |
. . . . . . . . 9
|
| 22 | eqid 2204 |
. . . . . . . . . 10
| |
| 23 | 6, 8, 22, 16 | grplinv 13300 |
. . . . . . . . 9
|
| 24 | 12, 21, 23 | syl2anc 411 |
. . . . . . . 8
|
| 25 | 19, 24 | eqtrd 2237 |
. . . . . . 7
|
| 26 | 25 | oveq2d 5950 |
. . . . . 6
|
| 27 | simpl3 1004 |
. . . . . . . . 9
| |
| 28 | nn0z 9374 |
. . . . . . . . 9
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . 8
|
| 30 | 6, 7 | mulgcl 13393 |
. . . . . . . 8
|
| 31 | 12, 29, 15, 30 | syl3anc 1249 |
. . . . . . 7
|
| 32 | 6, 8, 22 | grprid 13282 |
. . . . . . 7
|
| 33 | 12, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 26, 33 | eqtrd 2237 |
. . . . 5
|
| 35 | nn0z 9374 |
. . . . . . . . 9
| |
| 36 | 35 | ad2antll 491 |
. . . . . . . 8
|
| 37 | 6, 7 | mulgcl 13393 |
. . . . . . . 8
|
| 38 | 12, 36, 15, 37 | syl3anc 1249 |
. . . . . . 7
|
| 39 | 6, 8 | grpass 13259 |
. . . . . . 7
|
| 40 | 12, 31, 38, 21, 39 | syl13anc 1251 |
. . . . . 6
|
| 41 | 12 | grpmndd 13263 |
. . . . . . . . 9
|
| 42 | simprr 531 |
. . . . . . . . 9
| |
| 43 | 6, 7, 8 | mulgnn0dir 13406 |
. . . . . . . . 9
|
| 44 | 41, 27, 42, 15, 43 | syl13anc 1251 |
. . . . . . . 8
|
| 45 | simp21 1032 |
. . . . . . . . . . . . . 14
| |
| 46 | 45 | zcnd 9478 |
. . . . . . . . . . . . 13
|
| 47 | 13 | zcnd 9478 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | addcld 8074 |
. . . . . . . . . . . 12
|
| 49 | 48 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 51 | 49, 50 | negsubd 8371 |
. . . . . . . . . 10
|
| 52 | 46 | adantr 276 |
. . . . . . . . . . 11
|
| 53 | 52, 50 | pncand 8366 |
. . . . . . . . . 10
|
| 54 | 51, 53 | eqtrd 2237 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 5949 |
. . . . . . . 8
|
| 56 | 44, 55 | eqtr3d 2239 |
. . . . . . 7
|
| 57 | 56 | oveq1d 5949 |
. . . . . 6
|
| 58 | 40, 57 | eqtr3d 2239 |
. . . . 5
|
| 59 | 34, 58 | eqtr3d 2239 |
. . . 4
|
| 60 | 59 | anassrs 400 |
. . 3
|
| 61 | elznn0 9369 |
. . . . . 6
| |
| 62 | 61 | simprbi 275 |
. . . . 5
|
| 63 | 13, 62 | syl 14 |
. . . 4
|
| 64 | 63 | adantr 276 |
. . 3
|
| 65 | 11, 60, 64 | mpjaodan 799 |
. 2
|
| 66 | simpl1 1002 |
. . . 4
| |
| 67 | 45 | adantr 276 |
. . . . 5
|
| 68 | simpl23 1079 |
. . . . 5
| |
| 69 | 6, 7 | mulgcl 13393 |
. . . . 5
|
| 70 | 66, 67, 68, 69 | syl3anc 1249 |
. . . 4
|
| 71 | 67 | znegcld 9479 |
. . . . 5
|
| 72 | 6, 7 | mulgcl 13393 |
. . . . 5
|
| 73 | 66, 71, 68, 72 | syl3anc 1249 |
. . . 4
|
| 74 | 28 | 3ad2ant3 1022 |
. . . . . 6
|
| 75 | 74 | adantr 276 |
. . . . 5
|
| 76 | 66, 75, 68, 30 | syl3anc 1249 |
. . . 4
|
| 77 | 6, 8 | grpass 13259 |
. . . 4
|
| 78 | 66, 70, 73, 76, 77 | syl13anc 1251 |
. . 3
|
| 79 | 6, 7, 16 | mulgneg 13394 |
. . . . . . . 8
|
| 80 | 66, 67, 68, 79 | syl3anc 1249 |
. . . . . . 7
|
| 81 | 80 | oveq2d 5950 |
. . . . . 6
|
| 82 | 6, 8, 22, 16 | grprinv 13301 |
. . . . . . 7
|
| 83 | 66, 70, 82 | syl2anc 411 |
. . . . . 6
|
| 84 | 81, 83 | eqtrd 2237 |
. . . . 5
|
| 85 | 84 | oveq1d 5949 |
. . . 4
|
| 86 | 6, 8, 22 | grplid 13281 |
. . . . 5
|
| 87 | 66, 76, 86 | syl2anc 411 |
. . . 4
|
| 88 | 85, 87 | eqtrd 2237 |
. . 3
|
| 89 | 66 | grpmndd 13263 |
. . . . . 6
|
| 90 | simpr 110 |
. . . . . 6
| |
| 91 | simpl3 1004 |
. . . . . 6
| |
| 92 | 6, 7, 8 | mulgnn0dir 13406 |
. . . . . 6
|
| 93 | 89, 90, 91, 68, 92 | syl13anc 1251 |
. . . . 5
|
| 94 | 46 | adantr 276 |
. . . . . . . . 9
|
| 95 | 94 | negcld 8352 |
. . . . . . . 8
|
| 96 | 48 | adantr 276 |
. . . . . . . 8
|
| 97 | 95, 96 | addcomd 8205 |
. . . . . . 7
|
| 98 | 96, 94 | negsubd 8371 |
. . . . . . 7
|
| 99 | 47 | adantr 276 |
. . . . . . . 8
|
| 100 | 94, 99 | pncan2d 8367 |
. . . . . . 7
|
| 101 | 97, 98, 100 | 3eqtrd 2241 |
. . . . . 6
|
| 102 | 101 | oveq1d 5949 |
. . . . 5
|
| 103 | 93, 102 | eqtr3d 2239 |
. . . 4
|
| 104 | 103 | oveq2d 5950 |
. . 3
|
| 105 | 78, 88, 104 | 3eqtr3d 2245 |
. 2
|
| 106 | elznn0 9369 |
. . . 4
| |
| 107 | 106 | simprbi 275 |
. . 3
|
| 108 | 45, 107 | syl 14 |
. 2
|
| 109 | 65, 105, 108 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-2 9077 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 df-seqfrec 10574 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-mulg 13374 |
| This theorem is referenced by: mulgdir 13408 |
| Copyright terms: Public domain | W3C validator |