| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgdirlem | Unicode version | ||
| Description: Lemma for mulgdir 13565. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnndir.b |
|
| mulgnndir.t |
|
| mulgnndir.p |
|
| Ref | Expression |
|---|---|
| mulgdirlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . . . 6
| |
| 2 | 1 | grpmndd 13420 |
. . . . 5
|
| 3 | simprl 529 |
. . . . 5
| |
| 4 | simprr 531 |
. . . . 5
| |
| 5 | simpl23 1080 |
. . . . 5
| |
| 6 | mulgnndir.b |
. . . . . 6
| |
| 7 | mulgnndir.t |
. . . . . 6
| |
| 8 | mulgnndir.p |
. . . . . 6
| |
| 9 | 6, 7, 8 | mulgnn0dir 13563 |
. . . . 5
|
| 10 | 2, 3, 4, 5, 9 | syl13anc 1252 |
. . . 4
|
| 11 | 10 | anassrs 400 |
. . 3
|
| 12 | simpl1 1003 |
. . . . . . . . . 10
| |
| 13 | simp22 1034 |
. . . . . . . . . . 11
| |
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
|
| 15 | simpl23 1080 |
. . . . . . . . . 10
| |
| 16 | eqid 2206 |
. . . . . . . . . . 11
| |
| 17 | 6, 7, 16 | mulgneg 13551 |
. . . . . . . . . 10
|
| 18 | 12, 14, 15, 17 | syl3anc 1250 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 5972 |
. . . . . . . 8
|
| 20 | 6, 7 | mulgcl 13550 |
. . . . . . . . . 10
|
| 21 | 12, 14, 15, 20 | syl3anc 1250 |
. . . . . . . . 9
|
| 22 | eqid 2206 |
. . . . . . . . . 10
| |
| 23 | 6, 8, 22, 16 | grplinv 13457 |
. . . . . . . . 9
|
| 24 | 12, 21, 23 | syl2anc 411 |
. . . . . . . 8
|
| 25 | 19, 24 | eqtrd 2239 |
. . . . . . 7
|
| 26 | 25 | oveq2d 5973 |
. . . . . 6
|
| 27 | simpl3 1005 |
. . . . . . . . 9
| |
| 28 | nn0z 9412 |
. . . . . . . . 9
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . 8
|
| 30 | 6, 7 | mulgcl 13550 |
. . . . . . . 8
|
| 31 | 12, 29, 15, 30 | syl3anc 1250 |
. . . . . . 7
|
| 32 | 6, 8, 22 | grprid 13439 |
. . . . . . 7
|
| 33 | 12, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 26, 33 | eqtrd 2239 |
. . . . 5
|
| 35 | nn0z 9412 |
. . . . . . . . 9
| |
| 36 | 35 | ad2antll 491 |
. . . . . . . 8
|
| 37 | 6, 7 | mulgcl 13550 |
. . . . . . . 8
|
| 38 | 12, 36, 15, 37 | syl3anc 1250 |
. . . . . . 7
|
| 39 | 6, 8 | grpass 13416 |
. . . . . . 7
|
| 40 | 12, 31, 38, 21, 39 | syl13anc 1252 |
. . . . . 6
|
| 41 | 12 | grpmndd 13420 |
. . . . . . . . 9
|
| 42 | simprr 531 |
. . . . . . . . 9
| |
| 43 | 6, 7, 8 | mulgnn0dir 13563 |
. . . . . . . . 9
|
| 44 | 41, 27, 42, 15, 43 | syl13anc 1252 |
. . . . . . . 8
|
| 45 | simp21 1033 |
. . . . . . . . . . . . . 14
| |
| 46 | 45 | zcnd 9516 |
. . . . . . . . . . . . 13
|
| 47 | 13 | zcnd 9516 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | addcld 8112 |
. . . . . . . . . . . 12
|
| 49 | 48 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 51 | 49, 50 | negsubd 8409 |
. . . . . . . . . 10
|
| 52 | 46 | adantr 276 |
. . . . . . . . . . 11
|
| 53 | 52, 50 | pncand 8404 |
. . . . . . . . . 10
|
| 54 | 51, 53 | eqtrd 2239 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 5972 |
. . . . . . . 8
|
| 56 | 44, 55 | eqtr3d 2241 |
. . . . . . 7
|
| 57 | 56 | oveq1d 5972 |
. . . . . 6
|
| 58 | 40, 57 | eqtr3d 2241 |
. . . . 5
|
| 59 | 34, 58 | eqtr3d 2241 |
. . . 4
|
| 60 | 59 | anassrs 400 |
. . 3
|
| 61 | elznn0 9407 |
. . . . . 6
| |
| 62 | 61 | simprbi 275 |
. . . . 5
|
| 63 | 13, 62 | syl 14 |
. . . 4
|
| 64 | 63 | adantr 276 |
. . 3
|
| 65 | 11, 60, 64 | mpjaodan 800 |
. 2
|
| 66 | simpl1 1003 |
. . . 4
| |
| 67 | 45 | adantr 276 |
. . . . 5
|
| 68 | simpl23 1080 |
. . . . 5
| |
| 69 | 6, 7 | mulgcl 13550 |
. . . . 5
|
| 70 | 66, 67, 68, 69 | syl3anc 1250 |
. . . 4
|
| 71 | 67 | znegcld 9517 |
. . . . 5
|
| 72 | 6, 7 | mulgcl 13550 |
. . . . 5
|
| 73 | 66, 71, 68, 72 | syl3anc 1250 |
. . . 4
|
| 74 | 28 | 3ad2ant3 1023 |
. . . . . 6
|
| 75 | 74 | adantr 276 |
. . . . 5
|
| 76 | 66, 75, 68, 30 | syl3anc 1250 |
. . . 4
|
| 77 | 6, 8 | grpass 13416 |
. . . 4
|
| 78 | 66, 70, 73, 76, 77 | syl13anc 1252 |
. . 3
|
| 79 | 6, 7, 16 | mulgneg 13551 |
. . . . . . . 8
|
| 80 | 66, 67, 68, 79 | syl3anc 1250 |
. . . . . . 7
|
| 81 | 80 | oveq2d 5973 |
. . . . . 6
|
| 82 | 6, 8, 22, 16 | grprinv 13458 |
. . . . . . 7
|
| 83 | 66, 70, 82 | syl2anc 411 |
. . . . . 6
|
| 84 | 81, 83 | eqtrd 2239 |
. . . . 5
|
| 85 | 84 | oveq1d 5972 |
. . . 4
|
| 86 | 6, 8, 22 | grplid 13438 |
. . . . 5
|
| 87 | 66, 76, 86 | syl2anc 411 |
. . . 4
|
| 88 | 85, 87 | eqtrd 2239 |
. . 3
|
| 89 | 66 | grpmndd 13420 |
. . . . . 6
|
| 90 | simpr 110 |
. . . . . 6
| |
| 91 | simpl3 1005 |
. . . . . 6
| |
| 92 | 6, 7, 8 | mulgnn0dir 13563 |
. . . . . 6
|
| 93 | 89, 90, 91, 68, 92 | syl13anc 1252 |
. . . . 5
|
| 94 | 46 | adantr 276 |
. . . . . . . . 9
|
| 95 | 94 | negcld 8390 |
. . . . . . . 8
|
| 96 | 48 | adantr 276 |
. . . . . . . 8
|
| 97 | 95, 96 | addcomd 8243 |
. . . . . . 7
|
| 98 | 96, 94 | negsubd 8409 |
. . . . . . 7
|
| 99 | 47 | adantr 276 |
. . . . . . . 8
|
| 100 | 94, 99 | pncan2d 8405 |
. . . . . . 7
|
| 101 | 97, 98, 100 | 3eqtrd 2243 |
. . . . . 6
|
| 102 | 101 | oveq1d 5972 |
. . . . 5
|
| 103 | 93, 102 | eqtr3d 2241 |
. . . 4
|
| 104 | 103 | oveq2d 5973 |
. . 3
|
| 105 | 78, 88, 104 | 3eqtr3d 2247 |
. 2
|
| 106 | elznn0 9407 |
. . . 4
| |
| 107 | 106 | simprbi 275 |
. . 3
|
| 108 | 45, 107 | syl 14 |
. 2
|
| 109 | 65, 105, 108 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-2 9115 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-seqfrec 10615 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-mulg 13531 |
| This theorem is referenced by: mulgdir 13565 |
| Copyright terms: Public domain | W3C validator |