| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgdirlem | Unicode version | ||
| Description: Lemma for mulgdir 13686. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnndir.b |
|
| mulgnndir.t |
|
| mulgnndir.p |
|
| Ref | Expression |
|---|---|
| mulgdirlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 |
. . . . . 6
| |
| 2 | 1 | grpmndd 13541 |
. . . . 5
|
| 3 | simprl 529 |
. . . . 5
| |
| 4 | simprr 531 |
. . . . 5
| |
| 5 | simpl23 1101 |
. . . . 5
| |
| 6 | mulgnndir.b |
. . . . . 6
| |
| 7 | mulgnndir.t |
. . . . . 6
| |
| 8 | mulgnndir.p |
. . . . . 6
| |
| 9 | 6, 7, 8 | mulgnn0dir 13684 |
. . . . 5
|
| 10 | 2, 3, 4, 5, 9 | syl13anc 1273 |
. . . 4
|
| 11 | 10 | anassrs 400 |
. . 3
|
| 12 | simpl1 1024 |
. . . . . . . . . 10
| |
| 13 | simp22 1055 |
. . . . . . . . . . 11
| |
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
|
| 15 | simpl23 1101 |
. . . . . . . . . 10
| |
| 16 | eqid 2229 |
. . . . . . . . . . 11
| |
| 17 | 6, 7, 16 | mulgneg 13672 |
. . . . . . . . . 10
|
| 18 | 12, 14, 15, 17 | syl3anc 1271 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 6015 |
. . . . . . . 8
|
| 20 | 6, 7 | mulgcl 13671 |
. . . . . . . . . 10
|
| 21 | 12, 14, 15, 20 | syl3anc 1271 |
. . . . . . . . 9
|
| 22 | eqid 2229 |
. . . . . . . . . 10
| |
| 23 | 6, 8, 22, 16 | grplinv 13578 |
. . . . . . . . 9
|
| 24 | 12, 21, 23 | syl2anc 411 |
. . . . . . . 8
|
| 25 | 19, 24 | eqtrd 2262 |
. . . . . . 7
|
| 26 | 25 | oveq2d 6016 |
. . . . . 6
|
| 27 | simpl3 1026 |
. . . . . . . . 9
| |
| 28 | nn0z 9462 |
. . . . . . . . 9
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . 8
|
| 30 | 6, 7 | mulgcl 13671 |
. . . . . . . 8
|
| 31 | 12, 29, 15, 30 | syl3anc 1271 |
. . . . . . 7
|
| 32 | 6, 8, 22 | grprid 13560 |
. . . . . . 7
|
| 33 | 12, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 26, 33 | eqtrd 2262 |
. . . . 5
|
| 35 | nn0z 9462 |
. . . . . . . . 9
| |
| 36 | 35 | ad2antll 491 |
. . . . . . . 8
|
| 37 | 6, 7 | mulgcl 13671 |
. . . . . . . 8
|
| 38 | 12, 36, 15, 37 | syl3anc 1271 |
. . . . . . 7
|
| 39 | 6, 8 | grpass 13537 |
. . . . . . 7
|
| 40 | 12, 31, 38, 21, 39 | syl13anc 1273 |
. . . . . 6
|
| 41 | 12 | grpmndd 13541 |
. . . . . . . . 9
|
| 42 | simprr 531 |
. . . . . . . . 9
| |
| 43 | 6, 7, 8 | mulgnn0dir 13684 |
. . . . . . . . 9
|
| 44 | 41, 27, 42, 15, 43 | syl13anc 1273 |
. . . . . . . 8
|
| 45 | simp21 1054 |
. . . . . . . . . . . . . 14
| |
| 46 | 45 | zcnd 9566 |
. . . . . . . . . . . . 13
|
| 47 | 13 | zcnd 9566 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | addcld 8162 |
. . . . . . . . . . . 12
|
| 49 | 48 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 51 | 49, 50 | negsubd 8459 |
. . . . . . . . . 10
|
| 52 | 46 | adantr 276 |
. . . . . . . . . . 11
|
| 53 | 52, 50 | pncand 8454 |
. . . . . . . . . 10
|
| 54 | 51, 53 | eqtrd 2262 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 6015 |
. . . . . . . 8
|
| 56 | 44, 55 | eqtr3d 2264 |
. . . . . . 7
|
| 57 | 56 | oveq1d 6015 |
. . . . . 6
|
| 58 | 40, 57 | eqtr3d 2264 |
. . . . 5
|
| 59 | 34, 58 | eqtr3d 2264 |
. . . 4
|
| 60 | 59 | anassrs 400 |
. . 3
|
| 61 | elznn0 9457 |
. . . . . 6
| |
| 62 | 61 | simprbi 275 |
. . . . 5
|
| 63 | 13, 62 | syl 14 |
. . . 4
|
| 64 | 63 | adantr 276 |
. . 3
|
| 65 | 11, 60, 64 | mpjaodan 803 |
. 2
|
| 66 | simpl1 1024 |
. . . 4
| |
| 67 | 45 | adantr 276 |
. . . . 5
|
| 68 | simpl23 1101 |
. . . . 5
| |
| 69 | 6, 7 | mulgcl 13671 |
. . . . 5
|
| 70 | 66, 67, 68, 69 | syl3anc 1271 |
. . . 4
|
| 71 | 67 | znegcld 9567 |
. . . . 5
|
| 72 | 6, 7 | mulgcl 13671 |
. . . . 5
|
| 73 | 66, 71, 68, 72 | syl3anc 1271 |
. . . 4
|
| 74 | 28 | 3ad2ant3 1044 |
. . . . . 6
|
| 75 | 74 | adantr 276 |
. . . . 5
|
| 76 | 66, 75, 68, 30 | syl3anc 1271 |
. . . 4
|
| 77 | 6, 8 | grpass 13537 |
. . . 4
|
| 78 | 66, 70, 73, 76, 77 | syl13anc 1273 |
. . 3
|
| 79 | 6, 7, 16 | mulgneg 13672 |
. . . . . . . 8
|
| 80 | 66, 67, 68, 79 | syl3anc 1271 |
. . . . . . 7
|
| 81 | 80 | oveq2d 6016 |
. . . . . 6
|
| 82 | 6, 8, 22, 16 | grprinv 13579 |
. . . . . . 7
|
| 83 | 66, 70, 82 | syl2anc 411 |
. . . . . 6
|
| 84 | 81, 83 | eqtrd 2262 |
. . . . 5
|
| 85 | 84 | oveq1d 6015 |
. . . 4
|
| 86 | 6, 8, 22 | grplid 13559 |
. . . . 5
|
| 87 | 66, 76, 86 | syl2anc 411 |
. . . 4
|
| 88 | 85, 87 | eqtrd 2262 |
. . 3
|
| 89 | 66 | grpmndd 13541 |
. . . . . 6
|
| 90 | simpr 110 |
. . . . . 6
| |
| 91 | simpl3 1026 |
. . . . . 6
| |
| 92 | 6, 7, 8 | mulgnn0dir 13684 |
. . . . . 6
|
| 93 | 89, 90, 91, 68, 92 | syl13anc 1273 |
. . . . 5
|
| 94 | 46 | adantr 276 |
. . . . . . . . 9
|
| 95 | 94 | negcld 8440 |
. . . . . . . 8
|
| 96 | 48 | adantr 276 |
. . . . . . . 8
|
| 97 | 95, 96 | addcomd 8293 |
. . . . . . 7
|
| 98 | 96, 94 | negsubd 8459 |
. . . . . . 7
|
| 99 | 47 | adantr 276 |
. . . . . . . 8
|
| 100 | 94, 99 | pncan2d 8455 |
. . . . . . 7
|
| 101 | 97, 98, 100 | 3eqtrd 2266 |
. . . . . 6
|
| 102 | 101 | oveq1d 6015 |
. . . . 5
|
| 103 | 93, 102 | eqtr3d 2264 |
. . . 4
|
| 104 | 103 | oveq2d 6016 |
. . 3
|
| 105 | 78, 88, 104 | 3eqtr3d 2270 |
. 2
|
| 106 | elznn0 9457 |
. . . 4
| |
| 107 | 106 | simprbi 275 |
. . 3
|
| 108 | 45, 107 | syl 14 |
. 2
|
| 109 | 65, 105, 108 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-mulg 13652 |
| This theorem is referenced by: mulgdir 13686 |
| Copyright terms: Public domain | W3C validator |