| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgdirlem | Unicode version | ||
| Description: Lemma for mulgdir 13360. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnndir.b |
|
| mulgnndir.t |
|
| mulgnndir.p |
|
| Ref | Expression |
|---|---|
| mulgdirlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 |
. . . . . 6
| |
| 2 | 1 | grpmndd 13215 |
. . . . 5
|
| 3 | simprl 529 |
. . . . 5
| |
| 4 | simprr 531 |
. . . . 5
| |
| 5 | simpl23 1079 |
. . . . 5
| |
| 6 | mulgnndir.b |
. . . . . 6
| |
| 7 | mulgnndir.t |
. . . . . 6
| |
| 8 | mulgnndir.p |
. . . . . 6
| |
| 9 | 6, 7, 8 | mulgnn0dir 13358 |
. . . . 5
|
| 10 | 2, 3, 4, 5, 9 | syl13anc 1251 |
. . . 4
|
| 11 | 10 | anassrs 400 |
. . 3
|
| 12 | simpl1 1002 |
. . . . . . . . . 10
| |
| 13 | simp22 1033 |
. . . . . . . . . . 11
| |
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
|
| 15 | simpl23 1079 |
. . . . . . . . . 10
| |
| 16 | eqid 2196 |
. . . . . . . . . . 11
| |
| 17 | 6, 7, 16 | mulgneg 13346 |
. . . . . . . . . 10
|
| 18 | 12, 14, 15, 17 | syl3anc 1249 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 5940 |
. . . . . . . 8
|
| 20 | 6, 7 | mulgcl 13345 |
. . . . . . . . . 10
|
| 21 | 12, 14, 15, 20 | syl3anc 1249 |
. . . . . . . . 9
|
| 22 | eqid 2196 |
. . . . . . . . . 10
| |
| 23 | 6, 8, 22, 16 | grplinv 13252 |
. . . . . . . . 9
|
| 24 | 12, 21, 23 | syl2anc 411 |
. . . . . . . 8
|
| 25 | 19, 24 | eqtrd 2229 |
. . . . . . 7
|
| 26 | 25 | oveq2d 5941 |
. . . . . 6
|
| 27 | simpl3 1004 |
. . . . . . . . 9
| |
| 28 | nn0z 9363 |
. . . . . . . . 9
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . 8
|
| 30 | 6, 7 | mulgcl 13345 |
. . . . . . . 8
|
| 31 | 12, 29, 15, 30 | syl3anc 1249 |
. . . . . . 7
|
| 32 | 6, 8, 22 | grprid 13234 |
. . . . . . 7
|
| 33 | 12, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 26, 33 | eqtrd 2229 |
. . . . 5
|
| 35 | nn0z 9363 |
. . . . . . . . 9
| |
| 36 | 35 | ad2antll 491 |
. . . . . . . 8
|
| 37 | 6, 7 | mulgcl 13345 |
. . . . . . . 8
|
| 38 | 12, 36, 15, 37 | syl3anc 1249 |
. . . . . . 7
|
| 39 | 6, 8 | grpass 13211 |
. . . . . . 7
|
| 40 | 12, 31, 38, 21, 39 | syl13anc 1251 |
. . . . . 6
|
| 41 | 12 | grpmndd 13215 |
. . . . . . . . 9
|
| 42 | simprr 531 |
. . . . . . . . 9
| |
| 43 | 6, 7, 8 | mulgnn0dir 13358 |
. . . . . . . . 9
|
| 44 | 41, 27, 42, 15, 43 | syl13anc 1251 |
. . . . . . . 8
|
| 45 | simp21 1032 |
. . . . . . . . . . . . . 14
| |
| 46 | 45 | zcnd 9466 |
. . . . . . . . . . . . 13
|
| 47 | 13 | zcnd 9466 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | addcld 8063 |
. . . . . . . . . . . 12
|
| 49 | 48 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 51 | 49, 50 | negsubd 8360 |
. . . . . . . . . 10
|
| 52 | 46 | adantr 276 |
. . . . . . . . . . 11
|
| 53 | 52, 50 | pncand 8355 |
. . . . . . . . . 10
|
| 54 | 51, 53 | eqtrd 2229 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 5940 |
. . . . . . . 8
|
| 56 | 44, 55 | eqtr3d 2231 |
. . . . . . 7
|
| 57 | 56 | oveq1d 5940 |
. . . . . 6
|
| 58 | 40, 57 | eqtr3d 2231 |
. . . . 5
|
| 59 | 34, 58 | eqtr3d 2231 |
. . . 4
|
| 60 | 59 | anassrs 400 |
. . 3
|
| 61 | elznn0 9358 |
. . . . . 6
| |
| 62 | 61 | simprbi 275 |
. . . . 5
|
| 63 | 13, 62 | syl 14 |
. . . 4
|
| 64 | 63 | adantr 276 |
. . 3
|
| 65 | 11, 60, 64 | mpjaodan 799 |
. 2
|
| 66 | simpl1 1002 |
. . . 4
| |
| 67 | 45 | adantr 276 |
. . . . 5
|
| 68 | simpl23 1079 |
. . . . 5
| |
| 69 | 6, 7 | mulgcl 13345 |
. . . . 5
|
| 70 | 66, 67, 68, 69 | syl3anc 1249 |
. . . 4
|
| 71 | 67 | znegcld 9467 |
. . . . 5
|
| 72 | 6, 7 | mulgcl 13345 |
. . . . 5
|
| 73 | 66, 71, 68, 72 | syl3anc 1249 |
. . . 4
|
| 74 | 28 | 3ad2ant3 1022 |
. . . . . 6
|
| 75 | 74 | adantr 276 |
. . . . 5
|
| 76 | 66, 75, 68, 30 | syl3anc 1249 |
. . . 4
|
| 77 | 6, 8 | grpass 13211 |
. . . 4
|
| 78 | 66, 70, 73, 76, 77 | syl13anc 1251 |
. . 3
|
| 79 | 6, 7, 16 | mulgneg 13346 |
. . . . . . . 8
|
| 80 | 66, 67, 68, 79 | syl3anc 1249 |
. . . . . . 7
|
| 81 | 80 | oveq2d 5941 |
. . . . . 6
|
| 82 | 6, 8, 22, 16 | grprinv 13253 |
. . . . . . 7
|
| 83 | 66, 70, 82 | syl2anc 411 |
. . . . . 6
|
| 84 | 81, 83 | eqtrd 2229 |
. . . . 5
|
| 85 | 84 | oveq1d 5940 |
. . . 4
|
| 86 | 6, 8, 22 | grplid 13233 |
. . . . 5
|
| 87 | 66, 76, 86 | syl2anc 411 |
. . . 4
|
| 88 | 85, 87 | eqtrd 2229 |
. . 3
|
| 89 | 66 | grpmndd 13215 |
. . . . . 6
|
| 90 | simpr 110 |
. . . . . 6
| |
| 91 | simpl3 1004 |
. . . . . 6
| |
| 92 | 6, 7, 8 | mulgnn0dir 13358 |
. . . . . 6
|
| 93 | 89, 90, 91, 68, 92 | syl13anc 1251 |
. . . . 5
|
| 94 | 46 | adantr 276 |
. . . . . . . . 9
|
| 95 | 94 | negcld 8341 |
. . . . . . . 8
|
| 96 | 48 | adantr 276 |
. . . . . . . 8
|
| 97 | 95, 96 | addcomd 8194 |
. . . . . . 7
|
| 98 | 96, 94 | negsubd 8360 |
. . . . . . 7
|
| 99 | 47 | adantr 276 |
. . . . . . . 8
|
| 100 | 94, 99 | pncan2d 8356 |
. . . . . . 7
|
| 101 | 97, 98, 100 | 3eqtrd 2233 |
. . . . . 6
|
| 102 | 101 | oveq1d 5940 |
. . . . 5
|
| 103 | 93, 102 | eqtr3d 2231 |
. . . 4
|
| 104 | 103 | oveq2d 5941 |
. . 3
|
| 105 | 78, 88, 104 | 3eqtr3d 2237 |
. 2
|
| 106 | elznn0 9358 |
. . . 4
| |
| 107 | 106 | simprbi 275 |
. . 3
|
| 108 | 45, 107 | syl 14 |
. 2
|
| 109 | 65, 105, 108 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-mulg 13326 |
| This theorem is referenced by: mulgdir 13360 |
| Copyright terms: Public domain | W3C validator |