ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgdirlem Unicode version

Theorem mulgdirlem 13359
Description: Lemma for mulgdir 13360. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgdirlem  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )

Proof of Theorem mulgdirlem
StepHypRef Expression
1 simpl1 1002 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  G  e.  Grp )
21grpmndd 13215 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  G  e.  Mnd )
3 simprl 529 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  M  e.  NN0 )
4 simprr 531 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  N  e.  NN0 )
5 simpl23 1079 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  X  e.  B )
6 mulgnndir.b . . . . . 6  |-  B  =  ( Base `  G
)
7 mulgnndir.t . . . . . 6  |-  .x.  =  (.g
`  G )
8 mulgnndir.p . . . . . 6  |-  .+  =  ( +g  `  G )
96, 7, 8mulgnn0dir 13358 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
102, 3, 4, 5, 9syl13anc 1251 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
1110anassrs 400 . . 3  |-  ( ( ( ( G  e. 
Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N )  e.  NN0 )  /\  M  e.  NN0 )  /\  N  e.  NN0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
12 simpl1 1002 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Grp )
13 simp22 1033 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  N  e.  ZZ )
1413adantr 276 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  N  e.  ZZ )
15 simpl23 1079 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
16 eqid 2196 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
176, 7, 16mulgneg 13346 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
1812, 14, 15, 17syl3anc 1249 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
1918oveq1d 5940 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( -u N  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( ( invg `  G ) `
 ( N  .x.  X ) )  .+  ( N  .x.  X ) ) )
206, 7mulgcl 13345 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
2112, 14, 15, 20syl3anc 1249 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  ( N  .x.  X )  e.  B )
22 eqid 2196 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
236, 8, 22, 16grplinv 13252 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( N  .x.  X )  e.  B )  -> 
( ( ( invg `  G ) `
 ( N  .x.  X ) )  .+  ( N  .x.  X ) )  =  ( 0g
`  G ) )
2412, 21, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( invg `  G ) `  ( N  .x.  X ) ) 
.+  ( N  .x.  X ) )  =  ( 0g `  G
) )
2519, 24eqtrd 2229 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( -u N  .x.  X
)  .+  ( N  .x.  X ) )  =  ( 0g `  G
) )
2625oveq2d 5941 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( M  +  N )  .x.  X
)  .+  ( ( -u N  .x.  X ) 
.+  ( N  .x.  X ) ) )  =  ( ( ( M  +  N ) 
.x.  X )  .+  ( 0g `  G ) ) )
27 simpl3 1004 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  ( M  +  N )  e.  NN0 )
28 nn0z 9363 . . . . . . . . 9  |-  ( ( M  +  N )  e.  NN0  ->  ( M  +  N )  e.  ZZ )
2927, 28syl 14 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  ( M  +  N )  e.  ZZ )
306, 7mulgcl 13345 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  e.  B )
3112, 29, 15, 30syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( M  +  N
)  .x.  X )  e.  B )
326, 8, 22grprid 13234 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( M  +  N )  .x.  X
)  e.  B )  ->  ( ( ( M  +  N ) 
.x.  X )  .+  ( 0g `  G ) )  =  ( ( M  +  N ) 
.x.  X ) )
3312, 31, 32syl2anc 411 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( M  +  N )  .x.  X
)  .+  ( 0g `  G ) )  =  ( ( M  +  N )  .x.  X
) )
3426, 33eqtrd 2229 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( M  +  N )  .x.  X
)  .+  ( ( -u N  .x.  X ) 
.+  ( N  .x.  X ) ) )  =  ( ( M  +  N )  .x.  X ) )
35 nn0z 9363 . . . . . . . . 9  |-  ( -u N  e.  NN0  ->  -u N  e.  ZZ )
3635ad2antll 491 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  ZZ )
376, 7mulgcl 13345 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
3812, 36, 15, 37syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  ( -u N  .x.  X )  e.  B )
396, 8grpass 13211 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( ( M  +  N )  .x.  X )  e.  B  /\  ( -u N  .x.  X )  e.  B  /\  ( N  .x.  X
)  e.  B ) )  ->  ( (
( ( M  +  N )  .x.  X
)  .+  ( -u N  .x.  X ) )  .+  ( N  .x.  X ) )  =  ( ( ( M  +  N
)  .x.  X )  .+  ( ( -u N  .x.  X )  .+  ( N  .x.  X ) ) ) )
4012, 31, 38, 21, 39syl13anc 1251 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( ( M  +  N )  .x.  X )  .+  ( -u N  .x.  X ) )  .+  ( N 
.x.  X ) )  =  ( ( ( M  +  N ) 
.x.  X )  .+  ( ( -u N  .x.  X )  .+  ( N  .x.  X ) ) ) )
4112grpmndd 13215 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
42 simprr 531 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
436, 7, 8mulgnn0dir 13358 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( ( M  +  N )  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( (
( M  +  N
)  +  -u N
)  .x.  X )  =  ( ( ( M  +  N ) 
.x.  X )  .+  ( -u N  .x.  X
) ) )
4441, 27, 42, 15, 43syl13anc 1251 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( M  +  N )  +  -u N )  .x.  X
)  =  ( ( ( M  +  N
)  .x.  X )  .+  ( -u N  .x.  X ) ) )
45 simp21 1032 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  M  e.  ZZ )
4645zcnd 9466 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  M  e.  CC )
4713zcnd 9466 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  N  e.  CC )
4846, 47addcld 8063 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( M  +  N
)  e.  CC )
4948adantr 276 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  ( M  +  N )  e.  CC )
5047adantr 276 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  N  e.  CC )
5149, 50negsubd 8360 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( M  +  N
)  +  -u N
)  =  ( ( M  +  N )  -  N ) )
5246adantr 276 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  CC )
5352, 50pncand 8355 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( M  +  N
)  -  N )  =  M )
5451, 53eqtrd 2229 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( M  +  N
)  +  -u N
)  =  M )
5554oveq1d 5940 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( M  +  N )  +  -u N )  .x.  X
)  =  ( M 
.x.  X ) )
5644, 55eqtr3d 2231 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( M  +  N )  .x.  X
)  .+  ( -u N  .x.  X ) )  =  ( M  .x.  X
) )
5756oveq1d 5940 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( ( M  +  N )  .x.  X )  .+  ( -u N  .x.  X ) )  .+  ( N 
.x.  X ) )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
5840, 57eqtr3d 2231 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( ( M  +  N )  .x.  X
)  .+  ( ( -u N  .x.  X ) 
.+  ( N  .x.  X ) ) )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
5934, 58eqtr3d 2231 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
6059anassrs 400 . . 3  |-  ( ( ( ( G  e. 
Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N )  e.  NN0 )  /\  M  e.  NN0 )  /\  -u N  e.  NN0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
61 elznn0 9358 . . . . . 6  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
6261simprbi 275 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
6313, 62syl 14 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
6463adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  M  e.  NN0 )  ->  ( N  e. 
NN0  \/  -u N  e. 
NN0 ) )
6511, 60, 64mpjaodan 799 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  M  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
66 simpl1 1002 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  G  e.  Grp )
6745adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  M  e.  ZZ )
68 simpl23 1079 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  X  e.  B
)
696, 7mulgcl 13345 . . . . 5  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
7066, 67, 68, 69syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( M  .x.  X )  e.  B
)
7167znegcld 9467 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  -u M  e.  ZZ )
726, 7mulgcl 13345 . . . . 5  |-  ( ( G  e.  Grp  /\  -u M  e.  ZZ  /\  X  e.  B )  ->  ( -u M  .x.  X )  e.  B
)
7366, 71, 68, 72syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( -u M  .x.  X )  e.  B
)
74283ad2ant3 1022 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( M  +  N
)  e.  ZZ )
7574adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( M  +  N )  e.  ZZ )
7666, 75, 68, 30syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  e.  B
)
776, 8grpass 13211 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  .x.  X )  e.  B  /\  ( -u M  .x.  X )  e.  B  /\  ( ( M  +  N )  .x.  X
)  e.  B ) )  ->  ( (
( M  .x.  X
)  .+  ( -u M  .x.  X ) )  .+  ( ( M  +  N )  .x.  X
) )  =  ( ( M  .x.  X
)  .+  ( ( -u M  .x.  X ) 
.+  ( ( M  +  N )  .x.  X ) ) ) )
7866, 70, 73, 76, 77syl13anc 1251 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( ( M  .x.  X ) 
.+  ( -u M  .x.  X ) )  .+  ( ( M  +  N )  .x.  X
) )  =  ( ( M  .x.  X
)  .+  ( ( -u M  .x.  X ) 
.+  ( ( M  +  N )  .x.  X ) ) ) )
796, 7, 16mulgneg 13346 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
8066, 67, 68, 79syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `  ( M  .x.  X ) ) )
8180oveq2d 5941 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M 
.x.  X )  .+  ( -u M  .x.  X
) )  =  ( ( M  .x.  X
)  .+  ( ( invg `  G ) `
 ( M  .x.  X ) ) ) )
826, 8, 22, 16grprinv 13253 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .+  (
( invg `  G ) `  ( M  .x.  X ) ) )  =  ( 0g
`  G ) )
8366, 70, 82syl2anc 411 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M 
.x.  X )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) )  =  ( 0g
`  G ) )
8481, 83eqtrd 2229 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M 
.x.  X )  .+  ( -u M  .x.  X
) )  =  ( 0g `  G ) )
8584oveq1d 5940 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( ( M  .x.  X ) 
.+  ( -u M  .x.  X ) )  .+  ( ( M  +  N )  .x.  X
) )  =  ( ( 0g `  G
)  .+  ( ( M  +  N )  .x.  X ) ) )
866, 8, 22grplid 13233 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( M  +  N )  .x.  X
)  e.  B )  ->  ( ( 0g
`  G )  .+  ( ( M  +  N )  .x.  X
) )  =  ( ( M  +  N
)  .x.  X )
)
8766, 76, 86syl2anc 411 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( 0g
`  G )  .+  ( ( M  +  N )  .x.  X
) )  =  ( ( M  +  N
)  .x.  X )
)
8885, 87eqtrd 2229 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( ( M  .x.  X ) 
.+  ( -u M  .x.  X ) )  .+  ( ( M  +  N )  .x.  X
) )  =  ( ( M  +  N
)  .x.  X )
)
8966grpmndd 13215 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  G  e.  Mnd )
90 simpr 110 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  -u M  e.  NN0 )
91 simpl3 1004 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( M  +  N )  e.  NN0 )
926, 7, 8mulgnn0dir 13358 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  ( M  +  N
)  e.  NN0  /\  X  e.  B )
)  ->  ( ( -u M  +  ( M  +  N ) ) 
.x.  X )  =  ( ( -u M  .x.  X )  .+  (
( M  +  N
)  .x.  X )
) )
9389, 90, 91, 68, 92syl13anc 1251 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( -u M  +  ( M  +  N ) )  .x.  X )  =  ( ( -u M  .x.  X )  .+  (
( M  +  N
)  .x.  X )
) )
9446adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  M  e.  CC )
9594negcld 8341 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  -u M  e.  CC )
9648adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( M  +  N )  e.  CC )
9795, 96addcomd 8194 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( -u M  +  ( M  +  N ) )  =  ( ( M  +  N )  +  -u M ) )
9896, 94negsubd 8360 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M  +  N )  + 
-u M )  =  ( ( M  +  N )  -  M
) )
9947adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  N  e.  CC )
10094, 99pncan2d 8356 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M  +  N )  -  M )  =  N )
10197, 98, 1003eqtrd 2233 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( -u M  +  ( M  +  N ) )  =  N )
102101oveq1d 5940 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( -u M  +  ( M  +  N ) )  .x.  X )  =  ( N  .x.  X ) )
10393, 102eqtr3d 2231 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( -u M  .x.  X )  .+  ( ( M  +  N )  .x.  X
) )  =  ( N  .x.  X ) )
104103oveq2d 5941 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M 
.x.  X )  .+  ( ( -u M  .x.  X )  .+  (
( M  +  N
)  .x.  X )
) )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
10578, 88, 1043eqtr3d 2237 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  /\  -u M  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
106 elznn0 9358 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
107106simprbi 275 . . 3  |-  ( M  e.  ZZ  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
10845, 107syl 14 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
10965, 105, 108mpjaodan 799 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895    + caddc 7899    - cmin 8214   -ucneg 8215   NN0cn0 9266   ZZcz 9343   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Mndcmnd 13118   Grpcgrp 13202   invgcminusg 13203  .gcmg 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mulg 13326
This theorem is referenced by:  mulgdir  13360
  Copyright terms: Public domain W3C validator